skip to main content


Title: Fluorescence-based Methods for the Study of Protein-Protein Interactions Modulated by Ligand Binding
Background: The growing evidence that G protein-coupled receptors (GPCRs) not only form oligomersbut that the oligomers also may modulate the receptor function provides a promising avenue in the area ofdrug design. Highly selective drugs targeting distinct oligomeric sub-states offer the potential to increase efficacywhile reducing side effects. In this regard, determining the various oligomeric configurations and geometricsub-states of a membrane receptor is of utmost importance. Methods: In this report, we have reviewed two techniques that have proven to be valuable in monitoring thequaternary structure of proteins in vivo: Fӧrster resonance energy transfer (FRET) spectrometry and fluorescenceintensity fluctuation (FIF) spectrometry. In FRET spectrometry, distributions of pixel-level FRET efficiencyare analyzed using theoretical models of various quaternary structures to determine the geometry andstoichiometry of protein oligomers. In FIF spectrometry, spatial fluctuations of fluorescent molecule intensitiesare analyzed to reveal quantitative information on the size and stability of protein oligomers. Results: We demonstrate the application of these techniques to a number of different fluorescence-based studiesof cells expressing fluorescently labeled membrane receptors, both in the presence and absence of variousligands. The results show the effectiveness of using FRET spectrometry to determine detailed information regardingthe quaternary structure receptors form, as well as FIF and FRET for determining the relative abundanceof different-sized oligomers when an equilibrium forms between such structures. Conclusion: FRET and FIF spectrometry are valuable techniques for characterizing membrane receptor oligomers,which are of great benefit to structure‐based drug design.  more » « less
Award ID(s):
1919670
NSF-PAR ID:
10295916
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Current Pharmaceutical Design
Volume:
26
Issue:
44
ISSN:
1381-6128
Page Range / eLocation ID:
5668 to 5683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fluorescence fluctuation spectroscopy (FFS) encompasses a bevy of techniques that involve analyzing fluorescence intensity fluctuations occurring due to fluorescently labeled molecules diffusing in and out of a microscope's focal region. Statistical analysis of these fluctuations may reveal the oligomerization (i.e., association) state of said molecules. We have recently developed a new FFS‐based method, termed Two‐Dimensional Fluorescence Intensity Fluctuation (2D FIF) spectrometry, which provides quantitative information on the size and stability of protein oligomers as a function of receptor concentration. This article describes protocols for employing FIF spectrometry to quantify the oligomerization of a membrane protein of interest, with specific instructions regarding cell preparation, image acquisition, and analysis of images given in detail. Application of the FIF Spectrometry Suite, a software package designed for applying FIF analysis on fluorescence images, is emphasized in the protocol. Also discussed in detail is the identification, removal, and/or analysis of inhomogeneous regions of the membrane that appear as bright spots. The 2D FIF approach is particularly suited to assess the effects of agonists and antagonists on the oligomeric size of membrane receptors of interest. © 2022 Wiley Periodicals LLC.

    Basic Protocol 1: Preparation of live cells expressing protein constructs

    Basic Protocol 2: Image acquisition and noise correction

    Basic Protocol 3: Drawing and segmenting regions of interest

    Basic Protocol 4: Calculating the molecular brightness and concentration of individual image segments

    Basic Protocol 5: Combining data subsets using a manual procedure (Optional)

    Alternate Protocol 1: Combining data subsets using the advanced FIF spectrometry suite (Optional; alternative to Basic Protocol 5)

    Basic Protocol 6: Performing meta‐analysis of brightness spectrograms

    Alternate Protocol 2: Performing meta‐analysis of brightness spectrograms (alternative to Basic Protocol 6)

    Basic Protocol 7: Spot extraction and analysis using a manual procedure or by writing a program (Optional)

    Alternate Protocol 3: Automated spot extraction and analysis (Optional; alternative to Protocol 7)

    Support Protocol: Monomeric brightness determination

     
    more » « less
  2. The lack of biologically relevant protein structures can hinder rational design of small molecules to target G protein-coupled receptors (GPCRs). While ensemble docking using multiple models of the protein target is a promising technique for structure-based drug discovery, model clustering and selection still need further investigations to achieve both high accuracy and efficiency. In this work, we have developed an original ensemble docking approach, which identifies the most relevant conformations based on the essential dynamics of the protein pocket. This approach is applied to the study of small-molecule antagonists for the PAC1 receptor, a class B GPCR and a regulator of stress. As few as four representative PAC1 models are selected from simulations of a homology model and then used to screen three million compounds from the ZINC database and 23 experimentally validated compounds for PAC1 targeting. Our essential dynamics ensemble docking (EDED) approach can effectively reduce the number of false negatives in virtual screening and improve the accuracy to seek potent compounds. Given the cost and difficulties to determine membrane protein structures for all the relevant states, our methodology can be useful for future discovery of small molecules to target more other GPCRs, either with or without experimental structures. 
    more » « less
  3. The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M 1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)–linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M 1 and anti–green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M 1 -mEGFP was expressed at levels equal to the M 1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M 1 -mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M 1 -mEGFP–expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M 1 -mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels. 
    more » « less
  4. Abstract

    In recent years, new protein engineering methods have produced more than a dozen symmetric, self‐assembling protein cages whose structures have been validated to match their design models with near‐atomic accuracy. However, many protein cage designs that are tested in the lab do not form the desired assembly, and improving the success rate of design has been a point of recent emphasis. Here we present two protein structures solved by X‐ray crystallography of designed protein oligomers that form two‐component cages with tetrahedral symmetry. To improve on the past tendency toward poorly soluble protein, we used a computational protocol that favors the formation of hydrogen‐bonding networks over exclusively hydrophobic interactions to stabilize the designed protein–protein interfaces. Preliminary characterization showed highly soluble expression, and solution studies indicated successful cage formation by both designed proteins. For one of the designs, a crystal structure confirmed at high resolution that the intended tetrahedral cage was formed, though several flipped amino acid side chain rotamers resulted in an interface that deviates from the precise hydrogen‐bonding pattern that was intended. A structure of the other designed cage showed that, under the conditions where crystals were obtained, a noncage structure was formed wherein a porous 3D protein network in space group I213 is generated by an off‐target twofold homomeric interface. These results illustrate some of the ongoing challenges of developing computational methods for polar interface design, and add two potentially valuable new entries to the growing list of engineered protein materials for downstream applications.

     
    more » « less
  5. Havlíček, Vladimír (Ed.)
    Collision cross-section values, which can be determined using ion mobility experiments, are sensitive to the structures of protein ions and useful for applications to structural biology and biophysics. Protein ions with different charge states can exhibit very different collision cross-section values, but a comprehensive understanding of this relationship remains elusive. Here, we review cation-to-anion, proton-transfer reactions (CAPTR), a method for generating a series of charge-reduced protein cations by reacting quadrupole-selected cations with even-electron monoanions. The resulting CAPTR products are analyzed using a combination of ion mobility, mass spectrometry, and collisional activation. We compare CAPTR to other charge-manipulation strategies and review the results of various CAPTR-based experiments, exploring their contribution to a deeper understanding of the relationship between protein ion structure and charge state. 
    more » « less