skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge
From the discovery of functionally graded laminated composites, to near-structurally optimized diagonally reinforced square lattice structures, the skeletal system of the predominantly deep-sea sponge Euplectella aspergillum has continued to inspire biologists, materials scientists and mechanical engineers. Building on these previous efforts, in the present study, we develop an integrated finite element and fluid dynamics approach for investigating structure–function relationships in the complex maze-like organization of helical ridges that surround the main skeletal tube of this species. From these investigations, we discover that not only do these ridges provide additional mechanical reinforcement, but perhaps more significantly, provide a critical hydrodynamic benefit by effectively suppressing von Kármán vortex shedding and reducing lift forcing fluctuations over a wide range of biologically relevant flow regimes. By comparing the disordered sponge ridge geometry to other more symmetrical strake-based vortex suppression systems commonly employed in infrastructure applications ranging from antennas to underwater gas and oil pipelines, we find that the unique maze-like ridge organization of E. aspergillum can completely suppress vortex shedding rather than delaying their shedding to a more downstream location, thus highlighting their potential benefit in these engineering contexts.  more » « less
Award ID(s):
1922321
PAR ID:
10295922
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
18
Issue:
182
ISSN:
1742-5662
Page Range / eLocation ID:
20210559
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sponge‐like materials made from regenerated silk fibroin biopolymers are a tunable and advantageous platform for in vitro engineered tissue culture and in vivo tissue regeneration. Anisotropic, three‐dimensional (3D) silk fibroin sponge‐like scaffolds can mimic the architecture of contractile muscle. Herein, we use silk fibroin solution isolated from the cocoons ofBombyx morisilkworms to form aligned sponges via directional ice templating in a custom mold with a slurry of dry ice and ethanol. Hydrated tensile mechanical properties of these aligned sponges were evaluated as a function of silk polymer concentration (3% or 5%), freezing time (50% or 100% ethanol), and post‐lyophilization method for inducing crystallinity (autoclaving, water annealing). Hydrated static tensile tests were used to determine Young's modulus and ultimate tensile strength across sponge formulations at two strain rates to evaluate rate dependence in the calculated parameters. Results aligned with previous reports in the literature for isotropic silk fibroin sponge‐like scaffolds, where the method by which beta‐sheets were formed and level of beta‐sheet content (crystallinity) had the greatest impact on static parameters, while polymer concentration and freezing rate did not significantly impact static mechanical properties. We estimated the crystalline organization using molecular dynamics simulations to show that larger crystalline regions may be responsible for strength at low strain amplitudes and brittleness at high strain amplitudes in the autoclaved sponges. Within the parameters evaluated, extensional Young's modulus is tunable in the range of 600–2800 kPa. Dynamic tensile testing revealed the linear viscoelastic region to be between 0% and 10% strain amplitude and 0.2–2 Hz frequencies. Long‐term stability was evaluated by hysteresis and fatigue tests. Fatigue tests showed minimal change in the storage and loss modulus of 5% silk fibroin sponges for more than 6000 min of continuous mechanical stimulation in the linear regime at 10% strain amplitude and 1 Hz frequency. Furthermore, we confirmed that these mechanical properties hold when decellularized extracellular matrix is added to the sponges and when the mechanical property assessments were performed in cell culture media. We also used nano‐computed tomography (nano‐CT) and simulations to explore pore interconnectivity and tortuosity. Overall, these results highlight the potential of anisotropic, sponge‐like silk fibroin scaffolds for long‐term (>6 weeks) contractile muscle culture with an in vitro bioreactor system that provides routine mechanical stimulation. 
    more » « less
  2. Gorb, S. (Ed.)
    Through computational fluid dynamics (CFD) simulations of a model manta ray body, the hydrodynamic role of manta-like bioinspired flapping is investigated. The manta ray model motion is reconstructed from synchronized high-resolution videos of manta ray swimming. Rotation angles of the model skeletal joints are altered to scale the pitching and bending, resulting in eight models with different pectoral fin pitching and bending ratios. Simulations are performed using an in-house developed immersed boundary method-based numerical solver. Pectoral fin pitching ratio (PR) is found to have significant implications in the thrust and efficiency of the manta model. This occurs due to more optimal vortex formation and shedding caused by the lower pitching ratio. Leading edge vortexes (LEVs) formed on the bottom of the fin, a characteristic of the higher PR cases, produced parasitic low pressure that hinders thrust force. Lowering the PR reduces the influence of this vortex while another LEV that forms on the top surface of the fin strengthens it. A moderately high bending ratio (BR) can slightly reduce power consumption. Finally, by combining a moderately high BR = 0.83 with PR = 0.67, further performance improvements can be made. This enhanced understanding of manta-inspired propulsive mechanics fills a gap in our understanding of the manta-like mobuliform locomotion. This motivates a new generation of manta-inspired robots that can mimic the high speed and efficiency of their biological counterpart. 
    more » « less
  3. MDPI (Ed.)
    Through computational fluid dynamics (CFD) simulations of a model manta ray body, the hydrodynamic role of manta-like bioinspired flapping is investigated. The manta ray model motion is reconstructed from synchronized high-resolution videos of manta ray swimming. Rotation angles of the model skeletal joints are altered to scale the pitching and bending, resulting in eight models with different pectoral fin pitching and bending ratios. Simulations are performed using an in-house developed immersed boundary method-based numerical solver. Pectoral fin pitching ratio (PR) is found to have significant implications in the thrust and efficiency of the manta model. This occurs due to more optimal vortex formation and shedding caused by the lower pitching ratio. Leading edge vortexes (LEVs) formed on the bottom of the fin, a characteristic of the higher PR cases, produced parasitic low pressure that hinders thrust force. Lowering the PR reduces the influence of this vortex while another LEV that forms on the top surface of the fin strengthens it. A moderately high bending ratio (BR) can slightly reduce power consumption. Finally, by combining a moderately high BR = 0.83 with PR = 0.67, further performance improvements can be made. This enhanced understanding of manta-inspired propulsive mechanics fills a gap in our understanding of the manta-like mobuliform locomotion. This motivates a new generation of manta-inspired robots that can mimic the high speed and efficiency of their biological counterpart 
    more » « less
  4. Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and −1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay–Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration. 
    more » « less
  5. Abstract A simulated vortex within a large-eddy simulation is subjected to various surface terrain, implemented through the immersed boundary method, to analyze the effects of complex topography on vortex behavior. Thirty simulations, including a control with zero-height terrain, are grouped into four categories—2D sinusoidal hills, 3D hills, valleys, and ridges—with slight modifications within each category. A medium-swirl-ratio vortex is translated over shallow terrain, which is modest in size relative to the vortex core diameter and with no explicitly defined surface roughness. While domain size restricts results to the very near-field effects of terrain, vortex–terrain interaction yields notable results. Terrain influences act to increase the variability of the near-surface vortex, including a notable leftward (rightward) deflection, acceleration (deceleration), and an expansion (a contraction) of the vortex as it ascends (descends) the terrain owing to changes in the corner flow swirl ratio. Additionally, 10-m track analyses show stronger horizontal wind speeds are found 1) on upslope terrain, resulting from transient subvortices that are more intense compared to the control simulation, and 2) in between adjacent hills simultaneous with strong pressure perturbations that descend from aloft. Composite statistics confirm that the region in between adjacent hills has the strongest horizontal wind speeds, while upward motions are more intense during ascent. Overall, valley (ridge) simulations have the largest horizontal (vertically upward) wind speeds. Last, horizontal and vertical wind speeds are shown to be affected by other terrain properties such as slope steepness and two-dimensionality of the terrain. 
    more » « less