Environmental hypoxia challenges female reproductive physiology in placental mammals, increasing rates of gestational complications. Adaptation to high elevation has limited many of these effects in humans and other mammals, offering potential insight into the developmental processes that lead to and protect against hypoxia-related gestational complications. However, our understanding of these adaptations has been hampered by a lack of experimental work linking the functional, regulatory, and genetic underpinnings of gestational development in locally adapted populations. Here, we dissect high-elevation adaptation in the reproductive physiology of deer mice (
- Award ID(s):
- 1907233
- NSF-PAR ID:
- 10295992
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 223
- Issue:
- 24
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Peromyscus maniculatus ), a rodent species with an exceptionally broad elevational distribution that has emerged as a model for hypoxia adaptation. Using experimental acclimations, we show that lowland mice experience pronounced fetal growth restriction when challenged with gestational hypoxia, while highland mice maintain normal growth by expanding the compartment of the placenta that facilitates nutrient and gas exchange between gestational parent and fetus. We then use compartment-specific transcriptome analyses to show that adaptive structural remodeling of the placenta is coincident with widespread changes in gene expression within this same compartment. Genes associated with fetal growth in deer mice significantly overlap with genes involved in human placental development, pointing to conserved or convergent pathways underlying these processes. Finally, we overlay our results with genetic data from natural populations to identify candidate genes and genomic features that contribute to these placental adaptations. Collectively, these experiments advance our understanding of adaptation to hypoxic environments by revealing physiological and genetic mechanisms that shape fetal growth trajectories under maternal hypoxia. -
Key points Small mammals native to high altitude must sustain high rates of thermogenesis to cope with cold. Skeletal muscle is a key site of shivering and non‐shivering thermogenesis, but the importance of mitochondrial plasticity in cold hypoxic environments remains unresolved.
We examined high‐altitude deer mice, which have evolved a high capacity for aerobic thermogenesis, to determine the mechanisms of mitochondrial plasticity during chronic exposure to cold and hypoxia, alone and in combination.
Cold exposure in normoxia or hypoxia increased mitochondrial leak respiration and decreased phosphorylation efficiency and OXPHOS coupling efficiency, which may serve to augment non‐shivering thermogenesis. Cold also increased muscle oxidative capacity, but reduced the capacity for mitochondrial respiration via complex II relative to complexes I and II combined.
High‐altitude mice had a more oxidative muscle phenotype than low‐altitude mice.
Therefore, both plasticity and evolved changes in muscle mitochondria contribute to thermogenesis at high altitude.
Abstract Small mammals native to high altitude must sustain high rates of thermogenesis to cope with cold and hypoxic environments. Skeletal muscle is a key site of shivering and non‐shivering thermogenesis, but the importance of mitochondrial plasticity in small mammals at high altitude remains unresolved. High‐altitude deer mice (
Peromyscus maniculatus ) and low‐altitude white‐footed mice (P. leucopus ) were born and raised in captivity, and chronically exposed as adults to warm (25°C) normoxia, warm hypoxia (12 kPa O2), cold (5°C) normoxia, or cold hypoxia. We then measured oxidative enzyme activities, oxidative fibre density and capillarity in the gastrocnemius, and used a comprehensive substrate titration protocol to examine the function of muscle mitochondria by high‐resolution respirometry. Exposure to cold in both normoxia or hypoxia increased the activities of citrate synthase and cytochrome oxidase. In lowlanders, this was associated with increases in capillary density and the proportional abundance of oxidative muscle fibres, but in highlanders, these traits were unchanged at high levels across environments. Environment had some distinct effects on mitochondrial OXPHOS capacity between species, but the capacity of complex II relative to the combined capacity of complexes I and II was consistently reduced in both cold environments. Both cold environments also increased leak respiration and decreased phosphorylation efficiency and OXPHOS coupling efficiency in both species, which may serve to augment non‐shivering thermogenesis. These cold‐induced changes in mitochondrial function were overlaid upon the generally more oxidative phenotype of highlanders. Therefore, both plasticity and evolved changes in muscle mitochondria contribute to thermogenesis at high altitudes. -
null (Ed.)Residence at high altitude is consistently associated with low birthweight among placental mammals. This reduction in birthweight influences long-term health trajectories for both the offspring and mother. However, the physiological processes that contribute to fetal growth restriction at altitude are still poorly understood, and thus our ability to safely intervene remains limited. One approach to identify the factors that mitigate altitude-dependent fetal growth restriction is to study populations that are protected from fetal growth restriction through evolutionary adaptations (e.g., high altitude-adapted populations). Here, we examine human gestational physiology at high altitude from a novel evolutionary perspective that focuses on patterns of physiological plasticity, allowing us to identify 1) the contribution of specific physiological systems to fetal growth restriction and 2) the mechanisms that confer protection in highland-adapted populations. Using this perspective, our review highlights two general findings: first, that the beneficial value of plasticity in maternal physiology is often dependent on factors more proximate to the fetus; and second, that our ability to understand the contributions of these proximate factors is currently limited by thin data from altitude-adapted populations. Expanding the comparative scope of studies on gestational physiology at high altitude and integrating studies of both maternal and fetal physiology are needed to clarify the mechanisms by which physiological responses to altitude contribute to fetal growth outcomes. The relevance of these questions to clinical, agricultural, and basic research combined with the breadth of the unknown highlight gestational physiology at high altitude as an exciting niche for continued work.more » « less
-
Ruvinsky, Ilya (Ed.)Abstract Aerobic performance is tied to fitness as it influences an animal’s ability to find food, escape predators, or survive extreme conditions. At high altitude, where low O2 availability and persistent cold prevail, maximum metabolic heat production (thermogenesis) is an aerobic performance trait that is closely linked to survival. Understanding how thermogenesis evolves to enhance survival at high altitude will yield insight into the links between physiology, performance, and fitness. Recent work in deer mice (Peromyscus maniculatus) has shown that adult mice native to high altitude have higher thermogenic capacities under hypoxia compared with lowland conspecifics, but that developing high-altitude pups delay the onset of thermogenesis. This finding suggests that natural selection on thermogenic capacity varies across life stages. To determine the mechanistic cause of this ontogenetic delay, we analyzed the transcriptomes of thermoeffector organs—brown adipose tissue and skeletal muscle—in developing deer mice native to low and high altitude. We demonstrate that the developmental delay in thermogenesis is associated with adaptive shifts in the expression of genes involved in nervous system development, fuel/O2 supply, and oxidative metabolism pathways. Our results demonstrate that selection has modified the developmental trajectory of the thermoregulatory system at high altitude and has done so by acting on the regulatory systems that control the maturation of thermoeffector tissues. We suggest that the cold and hypoxic conditions of high altitude force a resource allocation tradeoff, whereby limited energy is allocated to developmental processes such as growth, versus active thermogenesis, during early development.more » « less
-
null (Ed.)Animals native to the hypoxic and cold environment at high altitude provide an excellent opportunity to elucidate the integrative mechanisms underlying the adaptive evolution and plasticity of complex traits. The capacity for aerobic thermogenesis can be a critical determinant of survival for small mammals at high altitude, but the physiological mechanisms underlying the evolution of this performance trait remain unresolved. We examined this issue by comparing high-altitude deer mice ( Peromyscus maniculatus ) with low-altitude deer mice and white-footed mice ( P. leucopus ). Mice were bred in captivity and adults were acclimated to each of four treatments: warm (25°C) normoxia, warm hypoxia (12 kPa O 2 ), cold (5°C) normoxia or cold hypoxia. Acclimation to hypoxia and/or cold increased thermogenic capacity in deer mice, but hypoxia acclimation led to much greater increases in thermogenic capacity in highlanders than in lowlanders. The high thermogenic capacity of highlanders was associated with increases in pulmonary O 2 extraction, arterial O 2 saturation, cardiac output and arterial–venous O 2 difference. Mechanisms underlying the evolution of enhanced thermogenic capacity in highlanders were partially distinct from those underlying the ancestral acclimation responses of lowlanders. Environmental adaptation has thus enhanced phenotypic plasticity and expanded the physiological toolkit for coping with the challenges at high altitude.more » « less