STEM-Mia (“my STEM”) is a National Science Foundation funded project that provides scholarships and supports to academically talented, low-income STEM students at MDC InterAmerican Campus. Over a five-year period, the NSF - S-STEM funds will support 45 MDC students with scholarships and wrap around services toward preparing them for Science, Technology, Mathematics and Engineering (STEM) careers, which are in high-demand and critical to building a competitive workforce that will help grow America’s economy. The grant project will target two primary populations – biology and computer science majors.
This presentation will discuss the impact of embedding faculty mentoring, discipline immersions, self-analysis, financial support, toward fostering and shaping student perceptions of their personal agency and empowering them to achieve their STEM-related academic and professional goals by helping them connect with the sources of their STEM self-efficacy and identity. What we are accomplishing in MDC serves as a model for two-year colleges seeking to incorporate curricular changes focused on success and retention in biology and computer science majors for populations who are underrepresented in STEM fields in general.
more »
« less
Integration of Biology, Mathematics and Computing in the Classroom Through the Creation and Repeated Use of Transdisciplinary Modules
The integration of biology with mathematics and computer science mandates the training of students capable of comfortably navigating among these fields. We address this formidable pedagogical challenge with the creation of transdisciplinary modules that guide students toward solving realistic problems with methods from different disciplines. Knowledge is gradually integrated as the same topic is revisited in biology, mathematics, and computer science courses. We illustrate this process with a module on the homeostasis and dynamic regulation of red blood cell production, which was first implemented in an introductory biology course and will be revisited in the mathematics and computer science curricula.
more »
« less
- Award ID(s):
- 1761945
- PAR ID:
- 10296002
- Date Published:
- Journal Name:
- PRIMUS
- ISSN:
- 1051-1970
- Page Range / eLocation ID:
- 1 to 19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this presentation, the research team discussed teachers' facilitation of argumentation in teaching computer programming (or coding) and how it related to their epistemic beliefs about mathematics and science. The preliminary results showed that teachers engaged their students in both justificatory and inquiry arguments when teaching coding. This was not the case with respect to mathematics and science, in which teachers described engaging students either in justificatory or inquiry argumentation exclusively. The team proposes that these siloed uses of argumentation in mathematics and science relate to the teachers' epistemic beliefs about the disciplines, and their use of argumentation in coding builds on and goes beyond their experiences with argumentation in teaching mathematics and science.more » « less
-
Lane College is a Historically Black College with a mission to educate underserved minority students. As part of a primarily undergraduate teaching institution, the Division of Natural and Physical Sciences provides students with a variety of hands-on experiences, including an eight-week summer research experience. Prior to the implementation of the Lane College summer research experience, only a small number of students participated in summer research or internships at other institutions. The Lane College summer undergraduate research experience aims to be more inclusive by eliminating GPA requirements, encouraging first- and second-year students to apply, and allowing students to select any of the available research projects in the areas of biology, chemistry, computer science, mathematics, or physics, regardless of major. Each year, twelve to fifteen students participate in mentored research in the areas of biology, chemistry, computer science, mathematics, and physics. The students participate in a professional development course twice per week where they learn about career opportunities in science and mathematics, preparing personal statements, scientific writing, and practice on how to effectively present their research findings. The students conduct their research in small groups with a faculty mentor. At the end of the summer, students present their overall results at the Lane Summer Science Symposium. Evaluation of student attitudes towards the research experience during the first iteration in summer 2021 indicates students internalized STEM community values, and developed a sense of self-efficacy for research, a strong sense of project ownership, and a sense of belonging to the science research community. Students participating in the evaluation believe that the experience made science more interesting and that they have better clarity of career opportunities in STEM. Similar levels of engagement were observed in the summers of 2022 and 2023. Students participating in the program are encouraged to submit abstracts to both regional and national conferences. This has resulted in 14 students presenting annually at discipline-specific conferences and one publication co-authored by two summer research students. This work is supported by grants NSF EES 2011938 and EDU 1833960.more » « less
-
Moving among levels of abstraction is an important skill in mathematics and computer science, and students show similar difficulties when applying abstraction in each discipline. While computer science educators have examined ways to explicitly teach students how to consciously navigate levels of abstraction, these ideas have not been explored in mathematics education. In this study, we examined elementary students’ solutions to a commonplace mathematics task to determine whether and how students moved among levels of abstraction as they solved the task. Furthermore, we analyzed student errors, categorizing them according to whether they related to moves among levels of abstraction or to purely mathematical steps. Our analysis showed: (1) students implicitly shift among levels of abstraction when solving “real- world” mathematics problems; (2) students make errors when making those implicit shifts in abstraction level; (3) the errors students make in abstraction outnumber the errors they make in purely mathematical skills. We discuss the implications for these findings, arguing they establish that there are opportunities for explicit instruction in abstraction in elementary mathematics, and that students’ overall mathematics achievement and problem-solving skills have the potential to benefit from applying these computer-science ideas to mathematics instruction.more » « less
-
In many discussions of the ways in which abstraction is applied in computer science (CS), researchers and advocates of CS education argue that CS students should be taught to consciously and explicitly move among levels of abstraction (Armoni Journal of Computers in Mathematics and Science Teaching, 32(3), 265–284, 2013; Kramer Communications of the ACM, 50(4), 37–42, 2007; Wing Communications of the ACM, 49(3), 33–35, 2006). In this paper, we describe one way that attention to levels of abstraction could also support learning in mathematics. Specifically, we propose a framework for using abstraction in elementary mathematics based on Armoni’s (2013) framework for teaching computational abstraction. We propose that such a framework could address an enduring challenge in mathematics for helping elementary students solve word problems with attention to context. In a discussion of implications, we propose that future research using the framework for instruction and teacher education could also explore ways that attention to levels of abstraction in elementary school mathematics may support later learning of mathematics and computer science.more » « less