- Award ID(s):
- 2032084
- NSF-PAR ID:
- 10296067
- Date Published:
- Journal Name:
- Infection Control & Hospital Epidemiology
- ISSN:
- 0899-823X
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Some reproductive-aged individuals remain unvaccinated against coronavirus disease 2019 (COVID-19) because of concerns about potential adverse effects on fertility. Using data from an internet-based preconception cohort study, we examined the associations of COVID-19 vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with fertility among couples trying to conceive spontaneously. We enrolled 2,126 self-identified female participants aged 21–45 year residing in the United States or Canada during December 2020–September 2021 and followed them through November 2021. Participants completed questionnaires every 8 weeks on sociodemographics, lifestyle, medical factors, and partner information. We fit proportional probabilities regression models to estimate associations between self-reported COVID-19 vaccination and SARS-CoV-2 infection in both partners with fecundability (i.e., the per-cycle probability of conception), adjusting for potential confounders. COVID-19 vaccination was not appreciably associated with fecundability in either partner (female fecundability ratio (FR) = 1.08, 95% confidence interval (CI): 0.95, 1.23; male FR = 0.95, 95% CI: 0.83, 1.10). Female SARS-CoV-2 infection was not strongly associated with fecundability (FR = 1.07, 95% CI: 0.87, 1.31). Male infection was associated with a transient reduction in fecundability (for infection within 60 days, FR = 0.82, 95% CI: 0.47, 1.45; for infection after 60 days, FR = 1.16, 95% CI: 0.92, 1.47). These findings indicate that male SARS-CoV-2 infection may be associated with a short-term decline in fertility and that COVID-19 vaccination does not impair fertility in either partner.more » « less
-
Abstract Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread globally. However, the contribution of community versus household transmission to the overall risk of infection remains unclear.
Methods Between November 2021 and March 2022, we conducted an active case-finding study in an urban informal settlement with biweekly visits across 1174 households with 3364 residents. Individuals displaying coronavirus disease 2019 (COVID-19)–related symptoms were identified, interviewed along with household contacts, and defined as index and secondary cases based on reverse-transcription polymerase chain reaction (RT-PCR) and symptom onset.
Results In 61 households, we detected a total of 94 RT-PCR–positive cases. Of 69 sequenced samples, 67 cases (97.1%) were attributed to the Omicron BA.1* variant. Among 35 of their households, the secondary attack rate was 50.0% (95% confidence interval [CI], 37.0%–63.0%). Women (relative risk [RR], 1.6 [95% CI, .9–2.7]), older individuals (median difference, 15 [95% CI, 2–21] years), and those reporting symptoms (RR, 1.73 [95% CI, 1.0–3.0]) had a significantly increased risk for SARS-CoV-2 secondary infection. Genomic analysis revealed substantial acquisition of viruses from the community even among households with other SARS-CoV-2 infections. After excluding community acquisition, we estimated a household secondary attack rate of 24.2% (95% CI, 11.9%–40.9%).
Conclusions These findings underscore the ongoing risk of community acquisition of SARS-CoV-2 among households with current infections. The observed high attack rate necessitates swift booster vaccination, rapid testing availability, and therapeutic options to mitigate the severe outcomes of COVID-19.
-
Background: recent applications of wastewater-based epidemiology (WBE) have demonstrated its ability to track the spread and dynamics of COVID-19 at the community level. Despite the growing body of research, quantitative synthesis of SARS-CoV-2 RNA levels in wastewater generated from studies across space and time using diverse methods has not been performed. Objective: the objective of this study is to examine the correlations between SARS-CoV-2 RNA levels in wastewater and epidemiological indicators across studies, stratified by key covariates in study methodologies. In addition, we examined the association of proportions of positive detections in wastewater samples and methodological covariates. Methods: we systematically searched the Web of Science for studies published by February 16th, 2021, performed a reproducible screening, and employed mixed-effects models to estimate the levels of SARS-CoV-2 viral RNA quantities in wastewater samples and their correlations to the case prevalence, the sampling mode (grab or composite sampling), and the wastewater fraction analyzed ( i.e. , solids, solid–supernatant mixtures, or supernatants/filtrates). Results: a hundred and one studies were found; twenty studies (671 biosamples and 1751 observations) were retained following a reproducible screening. The mean positivity across all studies was 0.68 (95%-CI, [0.52; 0.85]). The mean viral RNA abundance was 5244 marker copies per mL (95%-CI, [0; 16 432]). The Pearson correlation coefficients between the viral RNA levels and case prevalence were 0.28 (95%-CI, [0.01; 0.51]) for daily new cases or 0.29 (95%-CI, [−0.15; 0.73]) for cumulative cases. The fraction analyzed accounted for 12.4% of the variability in the percentage of positive detections, followed by the case prevalence (9.3% by daily new cases and 5.9% by cumulative cases) and sampling mode (0.6%). Among observations with positive detections, the fraction analyzed accounted for 56.0% of the variability in viral RNA levels, followed by the sampling mode (6.9%) and case prevalence (0.9% by daily new cases and 0.8% by cumulative cases). While the sampling mode and fraction analyzed both significantly correlated with the SARS-CoV-2 viral RNA levels, the magnitude of the increase in positive detection associated with the fraction analyzed was larger. The mixed-effects model treating studies as random effects and case prevalence as fixed effects accounted for over 90% of the variability in SARS-CoV-2 positive detections and viral RNA levels. Interpretations: positive pooled means and confidence intervals in the Pearson correlation coefficients between the SARS-CoV-2 viral RNA levels and case prevalence indicators provide quantitative evidence that reinforces the value of wastewater-based monitoring of COVID-19. Large heterogeneities among studies in proportions of positive detections, viral RNA levels, and Pearson correlation coefficients suggest a strong demand for methods to generate data accounting for cross-study heterogeneities and more detailed metadata reporting. Large variance was explained by the fraction analyzed, suggesting sample pre-processing and fractionation as a direction that needs to be prioritized in method standardization. Mixed-effects models accounting for study level variations provide a new perspective to synthesize data from multiple studies.more » « less
-
Background Limited data are available regarding the balance of risks and benefits from human milk and/or breastfeeding during and following maternal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective To investigate whether SARS-CoV-2 can be detected in milk and on the breast after maternal coronavirus disease 2019 (COVID-19) diagnosis; and characterize concentrations of milk immunoglobulin (Ig) A specific to the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) during the 2 months after onset of symptoms or positive diagnostic test. Methods Using a longitudinal study design, we collected milk and breast skin swabs one to seven times from 64 lactating women with COVID-19 over a 2-month period, beginning as early as the week of diagnosis. Milk and breast swabs were analyzed for SARS-CoV-2 RNA, and milk was tested for anti-RBD IgA. Results SARS-CoV-2 was not detected in any milk sample or on 71% of breast swabs. Twenty-seven out of 29 (93%) breast swabs collected after breast washing tested negative for SARS-CoV-2. Detection of SARS-CoV-2 on the breast was associated with maternal coughing and other household COVID-19. Most (75%; 95% CI, 70-79%; n=316) milk samples contained anti-RBD IgA, and concentrations increased ( P =.02) during the first two weeks following onset of COVID-19 symptoms or positive test. Milk-borne anti-RBD IgA persisted for at least two months in 77% of women. Conclusion Milk produced by women with COVID-19 does not contain SARS-CoV-2 and is likely a lasting source of passive immunity via anti-RBD IgA. These results support recommendations encouraging lactating women to continue breastfeeding during and after COVID-19 illness.more » « less
-
Abstract Background Children are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity.
Methods We collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms.
Results Nasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2–infected individuals with and without respiratory symptoms (PERMANOVA, P = .002; R2 = 0.009). SARS-CoV-2–infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18–.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2–infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age.
Conclusions We identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.