In this work-in-progress paper, we present the preliminary results of semi-structured interviews conducted with advanced manufacturing (AM) employers in rural communities to understand the workplace skills they seek. This study, part of a larger effort to document Northwest Florida’s rural AM employers’ desired competencies, identified employability skills valuable for entry-level technician positions. The employers who participated in this study represented the growing AM industry sub-sectors of timber, pipeline, and textiles. Our findings suggest that rural employers face challenges common to all AM employers: 1) the need for workplace skills, such as a strong commitment to teamwork and ongoing professional development; and 2) difficulties in encouraging employees’ transitions from job to career pathway, thus increasing their in-field persistence. These results have implications for educational institutions that offer AM degrees and for graduates who seek rural employment in the AM field. 
                        more » 
                        « less   
                    
                            
                            Infusing 21st Century Skill Development into the Undergraduate Curriculum: The Formation of the iBEARS Network
                        
                    
    
            ABSTRACT The demonstrated gap between skills needed and skills learned within a college education places both undergraduates seeking gainful employment and the employers seeking highly skilled workers at a disadvantage. Recent and up-and-coming college graduates should possess 21st century skills (i.e., communication, collaboration, problem solving), skills that employers deem necessary for the workplace. Research shows that the development of this skillset can help narrow the gap in producing highly skilled graduates for the science, technology, engineering, and mathematics (STEM) workforce. We propose the development of 21st century skills by utilizing the project-based learning (PjBL) framework and creating the inclusive biologist exploring active research with students (iBEARS) program, allowing undergraduate students to hone their 21st century skills and prepare for transition and success within the workplace. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2040595
- PAR ID:
- 10296100
- Date Published:
- Journal Name:
- Journal of Microbiology & Biology Education
- Volume:
- 22
- Issue:
- 2
- ISSN:
- 1935-7877
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In the past decade, academic computing curricular guidelines have shifted from specifying knowledge and occasionally technical skills to establishing the overall competence expected of graduates. For instance, Computing Curricula 2020 (CC2020) guidelines identify competency as knowledge, skills, and dispositions where “dispositions” correspond to the behavioral and professional characteristics driven by employer needs and captured by industry-driven frameworks, such as the Skills Framework for the Information Age (SFIA). Computing programs thus must also ensure that graduates have these characteristics to improve initial employment and long-term career prospects. This paper aims to understand and achieve consistency between academia and industry curricular frameworks. The CC2020 dispositions map to the responsibility characteristics for SFIA Level 3, the level appropriate for a new graduate. As the mapping is not one-to-one, the paper reviews the extent to which each SFIA responsibility characteristic requires and enables the CC22020 dispositions, identifying potential shortcomings and, conversely, the importance of each disposition as it supports the responsibility characteristics. The developed mapping is validated by relating the CC2020 dispositions to the SFIA behavioral factors, the principal “21st Century Skills,” and relevant competency-based educational frameworks. Thus, dispositions in competency-focused curricula map to the actual competencies sought by employers. Finally, the paper postulates that future computing curricula must further develop the CC2020 dispositions and relate them to SFIA to guide academic programs in their preparation of career-ready graduates to reduce the current “skills gap”.more » « less
- 
            Community colleges play a vital role in preparing the highly skilled technical workforce needed to support the biotechnology industry. Community colleges offer students hands-on practical experience, certificates, and technical degrees. Students include high-school graduates, individuals changing careers, college graduates, and even PhD holders. As these colleges support the many facets of the biotechnology industry, their laboratories are equipped to teach modern techniques, including DNA sequencing, mass spectrometry, microscopy, chromatography, immunoassays, and bioinformatics. Many programs are also developing education skill standards and curriculum to support the latest biotechnology manufacturing that includes CRISPR-based gene therapies, CAR-T, immuno-therapeutics, and patient derived tissues. Some programs have established contract service organizations and business incubators to catalyze regional economic development and provide internships for students entering the workforce. These college-run organizations share many similarities with ABRF core facilities. Over the last 20+ years, community college biotechnology programs have come together to share experiences and learning through the Bio-Link network. Bio-Link was funded by the NSF-ATE (National Science Foundation Advanced Technological Education) program until the fall of 2018. In the fall of 2019, InnovATEBIO, a new national center for biotechnology education, was initiated through a five-year NSF-ATE award. InnovATEBIO will build on the Bio-Link foundation to further advance connections between high schools, community colleges, and the biotechnology industry to increase the number of highly trained biotechnology technicians in the United States. InnovATEBIO will support activities designed to increase authentic research and work-based experiences and seeks to develop collaborations with ABRF members supporting course development and partner on projects that could be funded by NSF or others.more » « less
- 
            Since the early 21st century, ABET’s accreditation criteria have focused on learning outcomes (what students learn) rather than what professors teach. Such accreditation criteria bring to bear the need for programs to establish clear learning objectives and assessment processes that ensure that program graduates have the requisite technical and professional preparation. To this end, ABET defines student outcomes as “what students are expected to know and be able to do by the time of graduation,” further noting that these outcomes “relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.” With the recent release of Computing Curricula 2020 (CC2020), the competencies of computing program graduates have received additional attention. CC2020 describes competency as “comprising knowledge, skills, and dispositions that are observable in accomplishing a task within a work context.” ABET’s student outcomes thus largely correspond to the CC2020 competencies of program graduates. This paper is a first attempt to reconcile the two notions in the context of computer science. It presents the relevant background and discusses student competencies and their assessments that focus on competency-based learning in computer science. The contributions of this paper are (1) forging an improved shared understanding of computing competencies and (2) an interpretation of ABET’s student outcomes to improve the competency, including dispositions, expectations of computer science graduates.more » « less
- 
            Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessions were focused on materials and inventory planning, production economics, manufacturing quality, non-destructive evaluation, statistical process control, and lean/ sixsigma. The continuing education programs and course materials were developed based on the feedback from the industry advisory board for the Manufacturing Center of Excellence at Houston Community College, which is a collaborating partner on the ATE Grant. As a part of assessment of the programs, industry participants in the both sessions were given comprehensive surveys asking for their feedback on the applicability of the educational sessions. Overall, the participants rated the sessions very highly on the organization and the relevancy of the program topics and learning materials. The participants also felt that they learned new information through these programs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    