skip to main content


Title: Sampling Partial Acyclic Orientations in Chordal Graphs by the Lovasz Local Lemma (Student Abstract)
Sampling of various types of acyclic orientations of chordal graphs plays a central role in several AI applications. In this work we investigate the use of the recently proposed general partial rejection sampling technique of Guo, Jerrum, and Liu, based on the Lovasz Local Lemma, for sampling partial acyclic orientations. For a given undirected graph, an acyclic orientation is an assignment of directions to all of its edges so that there is no directed cycle. In partial orientations some edges are allowed to be undirected. We show how the technique can be used to sample partial acyclic orientations of chordal graphs fast and with a clearly specified underlying distribution. This is in contrast to other samplers of various acyclic orientations with running times exponentially dependent on the maximum degree of the graph.  more » « less
Award ID(s):
1819546
NSF-PAR ID:
10296108
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Thirty-Fifth AAAI Conference on Artificial Intelligence
Page Range / eLocation ID:
15901-15902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sampling of chordal graphs and various types of acyclic orientations over chordal graphs plays a central role in several AI applications such as causal structure learning. For a given undirected graph, an acyclic orientation is an assignment of directions to all of its edges which makes the resulting directed graph cycle-free. Sampling is often closely related to the corresponding counting problem. Counting of acyclic orientations of a given chordal graph can be done in polynomial time, but the previously known techniques do not seem to lead to a corresponding (efficient) sampler. In this work, we propose a dynamic programming framework which yields a counter and a uniform sampler, both of which run in (essentially) linear time. An interesting feature of our sampler is that it is a stand-alone algorithm that, unlike other DP-based samplers, does not need any preprocessing which determines the corresponding counts. 
    more » « less
  2. We study counting problems for several types of orientations of chordal graphs: source-sink-free orientations, sink-free orientations, acyclic orientations, and bipolar orientations, and, for the latter two, we also present linear-time uniform samplers. Counting sink-free, acyclic, or bipolar orientations are known to be #P-complete for general graphs, motivating our study on a restricted, yet well-studied, graph class. Our main focus is source-sink-free orientations, a natural restricted version of sink-free orientations related to strong orientations, which we introduce in this work. These orientations are intriguing, since despite their similarity, currently known FPRAS and sampling techniques (such as Markov chains or sink-popping) that apply to sink-free orientations do not seem to apply to source-sink-free orientations. We present fast polynomialtime algorithms counting these orientations on chordal graphs. Our approach combines dynamic programming with inclusion-exclusion (going two levels deep for source-sink-free orientations and one level for sinkfree orientations) throughout the computation. Dynamic programming counting algorithms can be typically used to produce a uniformly random sample. However, due to the negative terms of the inclusion-exclusion, the typical approach to obtain a polynomial-time sampling algorithm does not apply in our case. Obtaining such an almost uniform sampling algorithm for source-sink-free orientations in chordal graphs remains an open problem. Little is known about counting or sampling of acyclic or bipolar orientations, even on restricted graph classes. We design efficient (linear-time) exact uniform sampling algorithms for these orientations on chordal graphs. These algorithms are a byproduct of our counting algorithms, but unlike in other works that provide dynamic-programming-based samplers, we produce a random orientation without computing the corresponding count, which leads to a faster running time than the counting algorithm (since it avoids manipulation of large integers). 
    more » « less
  3. Markov Chain Monte Carlo (MCMC) has been the de facto technique for sampling and inference of large graphs such as online social networks. At the heart of MCMC lies the ability to construct an ergodic Markov chain that attains any given stationary distribution \pi, often in the form of random walks or crawling agents on the graph. Most of the works around MCMC, however, presume that the graph is undirected or has reciprocal edges, and become inapplicable when the graph is directed and non-reciprocal. Here we develop a similar framework for directed graphs called Non- Markovian Monte Carlo (NMMC) by establishing a mapping to convert \pi into the quasi-stationary distribution of a carefully constructed transient Markov chain on an extended state space. As applications, we demonstrate how to achieve any given distribution \pi on a directed graph and estimate the eigenvector centrality using a set of non-Markovian, history-dependent random walks on the same graph in a distributed manner.We also provide numerical results on various real-world directed graphs to confirm our theoretical findings, and present several practical enhancements to make our NMMC method ready for practical use inmost directed graphs. To the best of our knowledge, the proposed NMMC framework for directed graphs is the first of its kind, unlocking all the limitations set by the standard MCMC methods for undirected graphs. 
    more » « less
  4. We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with m edges and polynomially bounded integral demands, costs, and capacities in m^{1+o(1)} time. Our algorithm builds the flow through a sequence of m^{1+o(1)} approximate undirected minimum-ratio cycles, each of which is computed and processed in amortized m^{o(1)} time using a new dynamic graph data structure. Our framework extends to algorithms running in m^{1+o(1)} time for computing flows that minimize general edge-separable convex functions to high accuracy. This gives almost-linear time algorithms for several problems including entropy-regularized optimal transport, matrix scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs. 
    more » « less
  5. We show variants of spectral sparsification routines can preserve the total spanning tree counts of graphs, which by Kirchhoff's matrix-tree theorem, is equivalent to determinant of a graph Laplacian minor, or equivalently, of any SDDM matrix. Our analyses utilizes this combinatorial connection to bridge between statistical leverage scores / effective resistances and the analysis of random graphs by [Janson, Combinatorics, Probability and Computing `94]. This leads to a routine that in quadratic time, sparsifies a graph down to about $n^{1.5}$ edges in ways that preserve both the determinant and the distribution of spanning trees (provided the sparsified graph is viewed as a random object). Extending this algorithm to work with Schur complements and approximate Choleksy factorizations leads to algorithms for counting and sampling spanning trees which are nearly optimal for dense graphs. We give an algorithm that computes a $(1 \pm \delta)$ approximation to the determinant of any SDDM matrix with constant probability in about $n^2 \delta^{-2}$ time. This is the first routine for graphs that outperforms general-purpose routines for computing determinants of arbitrary matrices. We also give an algorithm that generates in about $n^2 \delta^{-2}$ time a spanning tree of a weighted undirected graph from a distribution with total variation distance of $\delta$ from the $w$-uniform distribution . 
    more » « less