skip to main content


Title: Non-Markovian Monte Carlo on Directed Graphs
Markov Chain Monte Carlo (MCMC) has been the de facto technique for sampling and inference of large graphs such as online social networks. At the heart of MCMC lies the ability to construct an ergodic Markov chain that attains any given stationary distribution \pi, often in the form of random walks or crawling agents on the graph. Most of the works around MCMC, however, presume that the graph is undirected or has reciprocal edges, and become inapplicable when the graph is directed and non-reciprocal. Here we develop a similar framework for directed graphs called Non- Markovian Monte Carlo (NMMC) by establishing a mapping to convert \pi into the quasi-stationary distribution of a carefully constructed transient Markov chain on an extended state space. As applications, we demonstrate how to achieve any given distribution \pi on a directed graph and estimate the eigenvector centrality using a set of non-Markovian, history-dependent random walks on the same graph in a distributed manner.We also provide numerical results on various real-world directed graphs to confirm our theoretical findings, and present several practical enhancements to make our NMMC method ready for practical use inmost directed graphs. To the best of our knowledge, the proposed NMMC framework for directed graphs is the first of its kind, unlocking all the limitations set by the standard MCMC methods for undirected graphs.  more » « less
Award ID(s):
1824518
NSF-PAR ID:
10121293
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM SIGMETRICS performance evaluation review
ISSN:
1557-9484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work considers the general task of estimating the sum of a bounded function over the edges of a graph, given neighborhood query access and where access to the entire network is prohibitively expensive. To estimate this sum, prior work proposes Markov chain Monte Carlo (MCMC) methods that use random walks started at some seed vertex and whose equilibrium distribution is the uniform distribution over all edges, eliminating the need to iterate over all edges. Unfortunately, these existing estimators are not scalable to massive real-world graphs. In this paper, we introduce Ripple, an MCMC-based estimator that achieves unprecedented scalability by stratifying the Markov chain state space into ordered strata with a new technique that we denote sequential stratified regenerations. We show that the Ripple estimator is consistent, highly parallelizable, and scales well. We empirically evaluate our method by applying Ripple to the task of estimating connected, induced subgraph counts given some input graph. Therein, we demonstrate that Ripple is accurate and can estimate counts of up to 12-node subgraphs, which is a task at a scale that has been considered unreachable, not only by prior MCMC-based methods but also by other sampling approaches. For instance, in this target application, we present results in which the Markov chain state space is as large as 1043, for which Ripple computes estimates in less than 4 h, on average. 
    more » « less
  2. null (Ed.)
    Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "on-the-fly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-Rényi G(n,p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries in the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree Δ. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n,p) model). The distribution over valid colorings is instead specified via a "huge" input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≥ 9Δ, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself. 
    more » « less
  3. In this paper, we introduce a new, spectral notion of approximation between directed graphs, which we call singular value (SV) approximation. SV-approximation is stronger than previous notions of spectral approximation considered in the literature, including spectral approximation of Laplacians for undirected graphs [ST04], standard approximation for directed graphs [CKP + 17], and unit-circle (UC) approximation for directed graphs [AKM + 20]. Further, SV approximation enjoys several useful properties not possessed by previous notions of approximation, e.g., it is preserved under products of randomwalk matrices and bounded matrices. We provide a nearly linear-time algorithm for SV-sparsifying (and hence UC-sparsifying) Eulerian directed graphs, as well as ℓ-step random walks on such graphs, for any ℓ≤poly(n). Combined with the Eulerian scaling algorithms of [CKK + 18], given an arbitrary (not necessarily Eulerian) directed graph and a set S of vertices, we can approximate the stationary probability mass of the (S,Sc) cut in an ℓ-step random walk to within a multiplicative error of 1/polylog(n) and an additive error of 1/poly(n) in nearly linear time. As a starting point for these results, we provide a simple black-box reduction from SV-sparsifying Eulerian directed graphs to SV-sparsifying undirected graphs; such a directed-to-undirected reduction was not known for previous notions of spectral approximation. 
    more » « less
  4. De Vico Fallani, Fabrizio (Ed.)
    The exponential family random graph modeling (ERGM) framework provides a highly flexible approach for the statistical analysis of networks (i.e., graphs). As ERGMs with dyadic dependence involve normalizing factors that are extremely costly to compute, practical strategies for ERGMs inference generally employ a variety of approximations or other workarounds. Markov Chain Monte Carlo maximum likelihood (MCMC MLE) provides a powerful tool to approximate the maximum likelihood estimator (MLE) of ERGM parameters, and is generally feasible for typical models on single networks with as many as a few thousand nodes. MCMC-based algorithms for Bayesian analysis are more expensive, and high-quality answers are challenging to obtain on large graphs. For both strategies, extension to the pooled case—in which we observe multiple networks from a common generative process—adds further computational cost, with both time and memory scaling linearly in the number of graphs. This becomes prohibitive for large networks, or cases in which large numbers of graph observations are available. Here, we exploit some basic properties of the discrete exponential families to develop an approach for ERGM inference in the pooled case that (where applicable) allows an arbitrarily large number of graph observations to be fit at no additional computational cost beyond preprocessing the data itself. Moreover, a variant of our approach can also be used to perform Bayesian inference under conjugate priors, again with no additional computational cost in the estimation phase. The latter can be employed either for single graph observations, or for observations from graph sets. As we show, the conjugate prior is easily specified, and is well-suited to applications such as regularization. Simulation studies show that the pooled method leads to estimates with good frequentist properties, and posterior estimates under the conjugate prior are well-behaved. We demonstrate the usefulness of our approach with applications to pooled analysis of brain functional connectivity networks and to replicated x-ray crystal structures of hen egg-white lysozyme. 
    more » « less
  5. We introduce a notion called entropic independence that is an entropic analog of spectral notions of high-dimensional expansion. Informally, entropic independence of a background distribution $\mu$ on $k$-sized subsets of a ground set of elements says that for any (possibly randomly chosen) set $S$, the relative entropy of a single element of $S$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $S$. Entropic independence is the analog of the notion of spectral independence, if one replaces variance by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy nature of spectral analysis of Markov chains on exponential-sized state spaces. In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral independence of a distribution under arbitrary external fields automatically implies entropic independence. We furthermore extend our theory to the case where spectral independence does not hold under arbitrary external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy contraction not for all distributions, but for those in a sufficiently large neighborhood of the stationary distribution. To derive our results, we relate entropic independence to properties of polynomials: $\mu$ is entropically independent exactly when a transformed version of the generating polynomial of $\mu$ is upper bounded by its linear tangent; this property is implied by concavity of the said transformation, which was shown by prior work to be locally equivalent to spectral independence. We apply our results to obtain (1) tight modified log-Sobolev inequalities and mixing times for multi-step down-up walks on fractionally log-concave distributions, (2) the tight mixing time of $O(n\log n)$ for Glauber dynamics on Ising models whose interaction matrix has eigenspectrum lying within an interval of length smaller than $1$, improving upon the prior quadratic dependence on $n$, and (3) nearly-linear time $\widetilde O_{\delta}(n)$ samplers for the hardcore and Ising models on $n$-node graphs that have $\delta$-relative gap to the tree-uniqueness threshold. In the last application, our bound on the running time does not depend on the maximum degree $\Delta$ of the graph, and is therefore optimal even for high-degree graphs, and in fact, is sublinear in the size of the graph for high-degree graphs. 
    more » « less