skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Duality Between the BSC and Quantum PSC
In 2018, Renes [IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 577-592 (2018)] developed a general theory of channel duality for classical-input quantum-output channels. His result shows that a number of well-known duality results for linear codes on the binary erasure channel can be extended to general classical channels at the expense of using dual problems which are intrinsically quantum mechanical. One special case of this duality is a connection between coding for error correction on the quantum pure-state channel (PSC) and coding for wiretap secrecy on the classical binary symmetric channel (BSC). Similarly, coding for error correction on the BSC is related to wire-tap secrecy on the PSC. While this result has important implications for classical coding, the machinery behind the general duality result is rather challenging for researchers without a strong background in quantum information theory. In this work, we leverage prior results for linear codes on PSCs to give an alternate derivation of the aforementioned special case by computing closed-form expressions for the performance metrics. The noted prior results include the optimality of square-root measurement for linear codes on the PSC and the Fourier duality of linear codes.  more » « less
Award ID(s):
1910571 1855879 1908730
PAR ID:
10296339
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
2232 to 2237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The action of a noise operator on a code transforms it into a distribution on the respective space. Some common examples from information theory include Bernoulli noise acting on a code in the Hamming space and Gaussian noise acting on a lattice in the Euclidean space. We aim to characterize the cases when the output distribution is close to the uniform distribution on the space, as measured by the Rényi divergence of order α∈(1,∞]. A version of this question is known as the channel resolvability problem in information theory, and it has implications for security guarantees in wiretap channels, error correction, discrepancy, worst-to-average case complexity reductions, and many other problems. Our work quantifies the requirements for asymptotic uniformity (perfect smoothing) and identifies explicit code families that achieve it under the action of the Bernoulli and ball noise operators on the code. We derive expressions for the minimum rate of codes required to attain asymptotically perfect smoothing. In proving our results, we leverage recent results from harmonic analysis of functions on the Hamming space. Another result pertains to the use of code families in Wyner’s transmission scheme on the binary wiretap channel. We identify explicit families that guarantee strong secrecy when applied in this scheme, showing that nested Reed–Muller codes can transmit messages reliably and securely over a binary symmetric wiretap channel with a positive rate. Finally, we establish a connection between smoothing and error correction in the binary symmetric channel. 
    more » « less
  2. In this paper, we consider the equivocation of finite blocklength coset codes when used over binary erasure wiretap channels. We make use of the equivocation matrix in comparing codes that are suitable for scenarios with noisy channels for both the intended receiver and an eavesdropper. Equivocation matrices have been studied in the past only for the binary erasure wiretap channel model with a noiseless channel for the intended recipient. In that case, an exact relationship between the elements of equivocation matrices for a code and its dual code was identified. The majority of work on coset codes for wiretap channels only addresses the noise-free main channel case, and extensions to noisy main channels require multi-edge type codes. In this paper, we supply a more insightful proof for the noiseless main channel case, and identify a new dual relationship that applies when two-edge type coset codes are used for the noisy main channel case. The end result is that the elements of the equivocation matrix for a dual code are known precisely from the equivocation matrix of the original code according to fixed reordering patterns. Such relationships allow one to study the equivocation of codes and their duals in tandem, which simplifies the search for best and/or good finite blocklength codes. This paper is the first work that succinctly links the equivocation/error correction capabilities of dual codes for two-edge type coset coding over erasure-prone main channels. 
    more » « less
  3. This paper presents a method for computing a finite-blocklength converse for the rate of fixed-length codes with feedback used on discrete memoryless channels (DMCs). The new converse is expressed in terms of a stochastic control problem whose solution can be efficiently computed using dynamic programming and Fourier methods. For channels such as the binary symmetric channel (BSC) and binary erasure channel (BEC), the accuracy of the proposed converse is similar to that of existing special-purpose converse bounds, but the new converse technique can be applied to arbitrary DMCs. We provide example applications of the new converse technique to the binary asymmetric channel (BAC) and the quantized amplitude-constrained AWGN channel. 
    more » « less
  4. Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. In addition, the rank properties of generator and parity-check matrices can also precisely characterize their security performance. Despite this, finding optimal nested linear secrecy codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods. This paper investigates the properties of nested linear codes, introduces a new representation of the relative generalized Hamming weight, and proposes a novel method for finding the best nested linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the brute-force technique in terms of speed and efficiency. 
    more » « less
  5. Quantum capacity, as the key figure of merit for a given quantum channel, upper bounds the channel's ability in transmitting quantum information. Identifying different types of channels, evaluating the corresponding quantum capacity, and finding the capacity-approaching coding scheme are the major tasks in quantum communication theory. Quantum channel in discrete variables has been discussed enormously based on various error models, while error model in the continuous variable channel has been less studied due to the infinite dimensional problem. In this paper, we investigate a general continuous variable quantum erasure channel. By defining an effective subspace of the continuous variable system, we find a continuous variable random coding model. We then derive the quantum capacity of the continuous variable erasure channel in the framework of decoupling theory. The discussion in this paper fills the gap of a quantum erasure channel in continuous variable setting and sheds light on the understanding of other types of continuous variable quantum channels. 
    more » « less