The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continue the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF. 
                        more » 
                        « less   
                    
                            
                            The Agile Academic Enterprise
                        
                    
    
            What might it mean to be an agile academic department? An agile college? An agile university? “Agile”, as used here, refers to practices and frameworks in software development and deployment, such as Scrum, Extreme Programming, and Crystal Clear. The Agile movement’s founding documents, the Agile Manifesto and its accompanying Agile Principles [https://agilemanifesto.org/], were published by leading software engineering researchers in February of 2001. The Manifesto staked out distinction with the prevailing software development approach at the time, called planned development and otherwise known as waterfall. The Agile Manifesto states, "We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value: "Individuals and interactions over processes and tools Working software over comprehensive documentation Customer collaboration over contract negotiation Responding to change over following a plan "That is, while there is value in the items on the right, we value the items on the left more.” Since the Manifesto’s publication, Agile use has expanded from its then primarily application in software development into a wide range of activities, from rocket motors (Space X), to race car development (Wikispeed), to finance (World Bank), to human resources (ING). Denning postulates Three Laws of the Agile Mindset: (1) The Law of the Small Team, in which small cross-functions teams work in short iterations receiving regular customer feedback; (2) The Law of the Customer, in which delighting the customer is taken as the ultimate purpose for any enterprise; and (3) The Law of the Network, in which networks of small teams act, having trust in the competency of each other, act like small teams in themselves [The Age of Agile: How Smart Companies Are Transforming the Way Work Gets Done. AMACOM, 2018]. Academic enterprises have unique attributes — recurring, months long, instructional terms; “customers” (students) whose short-term dissatisfaction can be part of the path to long-term success; industrial stakeholders who influence program direction and focus to satisfy hiring needs; generation of new knowledge, often with financial support from government agencies and industry; service to the profession and to our institutions. Using Denning’s Laws as a framing, we present possible approaches to employing agile within an academic department and discuss potential expansion of such to the level of a college and even an entire university. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1920780
- PAR ID:
- 10296464
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continue the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF.more » « less
- 
            In this paper, we propose an innovative practice based on agile software development methods. This research approach introduces agility into learning of research in an academic environment, resulting in an Agile Research Team. Such a research team follows an agile approach, based on modifications to the Scrum approach, to collaboratively learn about research, and to manage research projects and the researchers involved. Success in research requires self-motivation, collaboration, and knowledge exchange. Traditional research occurs in top-down research groups that are led by a leading researcher, who oversees postdoctoral researchers and Ph.D. students, who in turn manage graduate and undergraduate level students. It is up to individual researchers to stay motivated, to acquire the necessary skills to conduct research, and, oftentimes, to decide what the following steps are. Much like effective research groups, agile software development approaches rely on individuals to form self-organizing and motivated teams to deliver technical excellence. Agile software development teams also require an environment of sharing knowledge between senior and junior developers. Agile approaches can facilitate the efficient exchange of knowledge due to a strong dependency on face-to-face communication and teamwork. With the emerging adoption of agile methods for software development in industry and its ability to expedite projects’ delivery, we argue that such approaches can potentially provide similar benefits for researchers and students in academia. The advantages that agile methods provide are twofold: the ability to respond faster to change, and a shorter feedback loop, which facilitates the learning of how to conduct research. This paper explores the impactful benefits of using an agile approach to manage research team projects to keep researchers motivated, enhance the learning of knowledge and research skills, increase scalability, and foster inclusivity. This paper will also present the roles, responsibilities, and processes defined for managing an Agile Research Team to support adoption of the approach with other research teams. In addition, results and lessons learned are presented following our experience with using the approach as described in this work.more » « less
- 
            Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches.more » « less
- 
            This report describes an approach to building a cohort of students in a graduate software engineering program supported by the NSF S-STEM scholarship. We used many agile principles for building and sustaining the cohort, which is scaffolded around the students' academic studies and their simultaneous work on an externally sourced software development project. We discuss how the agile principles were applied in practice in this S-STEM project, how they helped build a cohesive student cohort, and how they helped bring the software development project to a successful completion. This report describes the work in progress, which is limited in scope by the software project duration and the number of participants.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    