skip to main content

Title: The Agile Academic Enterprise
What might it mean to be an agile academic department? An agile college? An agile university? “Agile”, as used here, refers to practices and frameworks in software development and deployment, such as Scrum, Extreme Programming, and Crystal Clear. The Agile movement’s founding documents, the Agile Manifesto and its accompanying Agile Principles [https://agilemanifesto.org/], were published by leading software engineering researchers in February of 2001. The Manifesto staked out distinction with the prevailing software development approach at the time, called planned development and otherwise known as waterfall. The Agile Manifesto states, "We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value: "Individuals and interactions over processes and tools Working software over comprehensive documentation Customer collaboration over contract negotiation Responding to change over following a plan "That is, while there is value in the items on the right, we value the items on the left more.” Since the Manifesto’s publication, Agile use has expanded from its then primarily application in software development into a wide range of activities, from rocket motors (Space X), to race car development (Wikispeed), to finance (World Bank), to human resources (ING). Denning postulates Three Laws of the Agile Mindset: more » (1) The Law of the Small Team, in which small cross-functions teams work in short iterations receiving regular customer feedback; (2) The Law of the Customer, in which delighting the customer is taken as the ultimate purpose for any enterprise; and (3) The Law of the Network, in which networks of small teams act, having trust in the competency of each other, act like small teams in themselves [The Age of Agile: How Smart Companies Are Transforming the Way Work Gets Done. AMACOM, 2018]. Academic enterprises have unique attributes — recurring, months long, instructional terms; “customers” (students) whose short-term dissatisfaction can be part of the path to long-term success; industrial stakeholders who influence program direction and focus to satisfy hiring needs; generation of new knowledge, often with financial support from government agencies and industry; service to the profession and to our institutions. Using Denning’s Laws as a framing, we present possible approaches to employing agile within an academic department and discuss potential expansion of such to the level of a college and even an entire university. « less
Authors:
; ; ; ; ;
Award ID(s):
1920780
Publication Date:
NSF-PAR ID:
10296464
Journal Name:
2021 ASEE Virtual Annual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continuemore »the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF.« less
  2. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continuemore »the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF.« less
  3. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6].more »The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley.« less
  4. Changing Electrical and Computer Engineering Department Culture from the Bottom Up: Action Plans Generated from Faculty Interviews We prefer a Lessons Learned Paper. In a collaborative effort between a RED: Revolutionizing Engineering and Computer Science Departments (RED) National Science Foundation grant awarded to an electrical and computer engineering department (ECpE) and a broader, university-wide ADVANCE program, ECpE faculty were invited to participate in focus groups to evaluate the culture of their department, to further department goals, and to facilitate long-term planning. Forty-four ECpE faculty members from a large Midwestern university participated in these interviews, which were specifically focused on departmental support and challenges, distribution of resources, faculty workload, career/family balance, mentoring, faculty professional development, productivity, recruitment, and diversity. Faculty were interviewed in groups according to rank, and issues important to particular subcategories of faculty (e.g., rank, gender, etc.) were noted. Data were analyzed by a social scientist using the full transcript of each interview/focus group and the NVivo 12 Qualitative Research Software Program. She presented the written report to the entire faculty. Based on the results of the focus groups, the ECpE department developed an action plan with six main thrusts for improving departmental culture and encouraging departmental change andmore »transformation. 1. Department Interactions – Encourage open dialogue and consider department retreats. Academic areas should be held accountable for the working environment and encouraged to discuss department-related issues. 2. Mentoring, Promotion, and Evaluation – Continue mentoring junior faculty. Improve the clarity of P&T operational documents and seek faculty input on the evaluation system. 3. Teaching Loads – Investigate teaching assistant (TA) allocation models and explore models for teaching loads. Develop a TA performance evaluation system and return TA support to levels seen in the 2010 timeframe. Improvements to teaching evaluations should consider differential workloads, clarifying expectations for senior advising, and hiring more faculty for undergraduate-heavy areas. 4. Diversity, Equity, and Inclusion – Enact an explicit focus on diversity in hiring. Review departmental policies on inclusive teaching and learning environments. 5. Building – Communicate with upper administration about the need for a new building. Explore possibilities for collaborations with Computer Science on a joint building. 6. Support Staff – Increase communication with the department regarding new service delivery models. Request additional support for Human Resources, communications, and finance. Recognize staff excellence at the annual department banquet and through college/university awards.« less
  5. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, anmore »engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches.« less