skip to main content


Title: Learning from Non-Assessed Resources: Deep Multi-Type Knowledge Tracing
The state of the art knowledge tracing approaches mostly model student knowledge using their performance in assessed learning resource types, such as quizzes, assignments, and exercises, and ignore the non-assessed learning resources. However, many student activities are non-assessed, such as watching video lectures, participating in a discussion forum, and reading a section of a textbook, all of which potentially contributing to the students' knowledge growth. In this paper, we propose the  first novel deep learning based knowledge tracing model (DMKT) that explicitly model student's knowledge transitions over both assessed and non-assessed learning activities. With DMKT we can discover the underlying latent concepts of each non-assessed and assessed learning material and better predict the student performance in future assessed learning resources. We compare our proposed method with various state of the art knowledge tracing methods on four real-world datasets and show its effectiveness in predicting student performance, representing student knowledge, and discovering the underlying domain model.  more » « less
Award ID(s):
1755910
NSF-PAR ID:
10296471
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 14th International Conference on Educational Data Mining, EDM 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate modeling of student knowledge is essential for large-scale online learning systems that are increasingly used for student training. Knowledge tracing aims to model student knowledge state given the student's sequence of learning activities. Modern Knowledge tracing (KT) is usually formulated as a supervised sequence learning problem to predict students' future practice performance according to their past observed practice scores by summarizing student knowledge state as a set of evolving hidden variables. Because of this formulation, many current KT solutions are not fit for modeling student learning from non-assessed learning activities with no explicit feedback or score observation (e.g., watching video lectures that are not graded). Additionally, these models cannot explicitly represent the dynamics of knowledge transfer among different learning activities, particularly between the assessed (e.g., quizzes) and non-assessed (e.g., video lectures) learning activities. In this paper, we propose Transition-Aware Multi-activity Knowledge Tracing (TAMKOT), which models knowledge transfer between learning materials, in addition to student knowledge, when students transition between and within assessed and non-assessed learning materials. TAMKOT is formulated as a deep recurrent multi-activity learning model that explicitly learns knowledge transfer by activating and learning a set of knowledge transfer matrices, one for each transition type between student activities. Accordingly, our model allows for representing each material type in a different yet transferrable latent space while maintaining student knowledge in a shared space. We evaluate our model on three real-world publicly available datasets and demonstrate TAMKOT's capability in predicting student performance and modeling knowledge transfer. 
    more » « less
  2. Knowledge tracing (KT), or modeling student knowledge state given their past activity sequence, is one of the essential tasks in online education systems. Research has demonstrated that students benefit from both assessed (e.g., solving problems, which can be graded) and non-assessed learning activities (e.g., watching video lectures, which cannot be graded), and thus, modeling student knowledge from multiple types of activities with knowledge transfer between them is crucial. However, current approaches to multi-activity knowledge tracing cannot capture coarse-grained between-type associations and are primarily evaluated by predicting student performance on upcoming assessed activities (labeled data). Therefore, they are inadequate in incorporating signals from non-assessed activities (unlabeled data). We propose Graph-enhanced Multi-activity Knowledge Tracing (GMKT) that addresses these challenges by jointly learning a fine-grained recurrent memory-augmented student knowledge model and a coarse-grained graph neural network. In GMKT, we formulate multi-activity knowledge tracing as a semi-supervised sequence learning problem and optimize for accurate student performance and activity type at each time step. We demonstrate the effectiveness of our proposed model by experimenting on three real-world datasets. 
    more » « less
  3. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  4. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  5. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less