The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students’ knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead finding that it may be the model’s complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student affect as well as expanding on exist- ing work that explored benchmarks inmore »
Learning from Non-Assessed Resources: Deep Multi-Type Knowledge Tracing
The state of the art knowledge tracing approaches mostly model student knowledge using their performance in assessed learning resource types, such as quizzes, assignments,
and exercises, and ignore the non-assessed learning resources.
However, many student activities are non-assessed, such as watching video lectures, participating in a discussion forum, and reading a section of a textbook, all of which potentially contributing to the students' knowledge growth. In this paper, we propose the first novel deep learning based knowledge tracing model (DMKT) that explicitly model student's knowledge transitions over both assessed and non-assessed learning activities. With DMKT we can discover the underlying latent concepts of each non-assessed and assessed learning material and better predict the student performance in future assessed learning resources. We compare our proposed method with various state of the art knowledge tracing methods on four real-world datasets and show its effectiveness in predicting student performance, representing student knowledge, and discovering the underlying domain model.
- Award ID(s):
- 1755910
- Publication Date:
- NSF-PAR ID:
- 10296471
- Journal Name:
- Proceedings of the 14th International Conference on Educational Data Mining, EDM 2021
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all attempts are equivalently important in discovering students’ knowledge state, andmore »
-
The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students’ knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead finding that it may be the model’s complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student affect as well as expanding on exist- ing work that explored benchmarks inmore »
-
The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students' knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead nding that it may be the model's complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student a ect as well as expanding on exist- ing work that explored benchmarksmore »
-
Interactive learning environments facilitate learning by providing hints to fill the gaps in the understanding of a concept. Studies suggest that hints are not used optimally by learners. Either they are used unnecessarily or not used at all. It has been shown that learning outcomes can be improved by providing hints when needed. An effective hinttaking prediction model can be used by a learning environment to make adaptive decisions on whether to withhold or provide hints. Past work on student behavior modeling has focused extensively on the task of modeling a learner’s state of knowledge over time, referred to as knowledge tracing. The other aspects of a learner’s behavior such as tendency to use hints has garnered limited attention. Past knowledge tracing models either ignore the questions where a hint was taken or label hints taken as an incorrect response. We propose a multi-task memory-augmented deep learning model to jointly predict the hint-taking and the knowledge tracing task. The model incorporates the effect of past responses as well as hints taken on both the tasks. We apply the model on two datasets – ASSISTments 2009-10 skill builder dataset and Junyi Academy Math Practicing Log. The results show that deep learningmore »