skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An automatic refactoring framework for replacing test-production inheritance by mocking mechanism
Unit testing focuses on verifying the functions of individual units of a software system. It is challenging due to the high inter-dependencies among software units. Developers address this by mocking-replacing the dependency by a "faked" object. Despite the existence of powerful, dedicated mocking frameworks, developers often turn to a "hand-rolled" approach-inheritance. That is, they create a subclass of the dependent class and mock its behavior through method overriding. However, this requires tedious implementation and compromises the design quality of unit tests. This work contributes a fully automated refactoring framework to identify and replace the usage of inheritance by using Mockito-a well received mocking framework. Our approach is built upon the empirical experience from five open source projects that use inheritance for mocking. We evaluate our approach on four other projects. Results show that our framework is efficient, generally applicable to new datasets, mostly preserves test case behaviors in detecting defects (in the form of mutants), and decouples test code from production code. The qualitative evaluation by experienced developers suggests that the auto-refactoring solutions generated by our framework improve the quality of the unit test cases in various aspects, such as making test conditions more explicit, as well as improved cohesion, readability, understandability, and maintainability with test cases.  more » « less
Award ID(s):
1909763
PAR ID:
10296502
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unit testing focuses on verifying the functions of individual units of a software system. It is challenging due to the high inter dependencies among software units. Developers address this by mocking—replacing the dependency by a “fake” object. Despite the existence of powerful, dedicated mocking frameworks, developers often turn to a “hand-rolled” approach—inheritance. That is, they create a subclass of the dependent class and mock its behavior through method overriding. However, this requires tedious implementation and compromises the design quality of unit tests. This work contributes a fully automated refactoring framework to identify and replace the usage of inheritance by using Mockito—a well received mocking framework. Our approach is built upon the empirical experience from five open source projects that use inheritance for mocking. We evaluate our approach on nine other projects. Results show that our framework is efficient, generally applicable to new datasets, mostly preserves test case behaviors in detecting defects (in the form of mutants), and decouples test code from production code. The qualitative evaluation by experienced developers suggests that the auto-refactoring solutions generated by our framework improve the quality of the unit test cases in various aspects, such as making test conditions more explicit, as well as improved cohesion, readability, understandability, and maintainability with test cases. Finally, we submit 23 pull requests containing our refactoring solutions to the open-source projects. It turns out that, 9 requests are accepted/merged, 6 requests are rejected, the remaining requests are pending (5 requests), with unexpected exceptions (2 requests), or undecided (1 request). In particular, among the 21 open source developers that are involved in the reviewing process, 81% give positive votes. This indicates that our refactoring solutions are quite well received by the open-source projects and developers. 
    more » « less
  2. Background: Code refactoring is widely recognized as an essential software engineering practice to improve the understandability and maintainability of the source code. The Extract Method refactoring is considered as “Swiss army knife” of refactorings, as developers often apply it to improve their code quality, e.g., decompose long code fragments, reduce code complexity, eliminate duplicated code, etc. In recent years, several studies attempted to recommend Extract Method refactorings allowing the collection, analysis, and revelation of actionable data-driven insights about refactoring practices within software projects. Aim: In this paper, we aim at reviewing the current body of knowledge on existing Extract Method refactoring research and explore their limitations and potential improvement opportunities for future research efforts. That is, Extract Method is considered one of the most widely-used refactorings, but difficult to apply in practice as it involves low-level code changes such as statements, variables, parameters, return types, etc. Hence, researchers and practitioners begin to be aware of the state-of-the-art and identify new research opportunities in this context. Method: We review the body of knowledge related to Extract Method refactoring in the form of a systematic literature review (SLR). After compiling an initial pool of 1,367 papers, we conducted a systematic selection and our final pool included 83 primary studies. We define three sets of research questions and systematically develop and refine a classification schema based on several criteria including their methodology, applicability, and degree of automation. Results: The results construct a catalog of 83 Extract Method approaches indicating that several techniques have been proposed in the literature. Our results show that: (i) 38.6% of Extract Method refactoring studies primarily focus on addressing code clones; (ii) Several of the Extract Method tools incorporate the developer's involvement in the decision-making process when applying the method extraction, and (iii) the existing benchmarks are heterogeneous and do not contain the same type of information, making standardizing them for the purpose of benchmarking difficult. Conclusions: Our study serves as an “index” to the body of knowledge in this area for researchers and practitioners in determining the Extract Method refactoring approach that is most appropriate for their needs. Our findings also empower the community with information to guide the future development of refactoring tools. 
    more » « less
  3. Block-based programming has been overwhelmingly successful in revitalizing introductory computing education and in facilitating end-user development. However, poor code quality makes block-based programs hard to understand, modify, and reuse, thus hurting the educational and productivity effectiveness of blocks. There is great potential benefit in empowering programmers in this domain to systematically improve the code quality of their projects. Refactoring--improving code quality while preserving its semantics--has been widely adopted in traditional software development. In this work, we introduce refactoring to Scratch. We define four new Scratch refactorings: Extract Custom Block, Extract Parent Sprite, Extract Constant, and Reduce Variable Scope. To automate the application of these refactorings, we enhance the Scratch programming environment with powerful program analysis and transformation routines. To evaluate the utility of these refactorings, we apply them to remove the code smells detected in a representative dataset of 448 Scratch projects. We also conduct a between-subjects user study with 24 participants to assess how our refactoring tools impact programmers. Our results show that refactoring improves the subjects' code quality metrics, while our refactoring tools help motivate programmers to improve code quality. 
    more » « less
  4. Refactoring is the practice of improving software quality without altering its external behavior. Developers intuitively refactor their code for multiple purposes, such as improving program comprehension, reducing code complexity, dealing with technical debt, and removing code smells. However, no prior studies have exposed the students to an experience of the process of antipatterns detection and refactoring correction, and provided students with toolset to practice it. To understand and increase the awareness of refactoring concepts, in this paper, we aim to reflect on our experience with teaching refactoring and how it helps students become more aware of bad programming practices and the importance of correcting them via refactoring. This paper discusses the results of an experiment in the classroom that involved carrying out various refactoring activities for the purpose of removing antipatterns using JDeodorant, an IDE plugin that supports antipatterns detection and refactoring. The results of the quantitative and qualitative analysis with 171 students show that students tend to appreciate the idea of learning refactoring and are satisfied with various aspects of the JDeodorant plugin's operation. Through this experiment, refactoring can turn into a vital part of the computing educational plan. We envision our findings enabling educators to support students with refactoring tools tuned towards safer and trustworthy refactoring. 
    more » « less
  5. null (Ed.)
    Software bots are used by Open Source Software (OSS) projects to streamline the code review process. Interfacing between developers and automated services, code review bots report continuous integration failures, code quality checks, and code coverage. However, the impact of such bots on maintenance tasks is still neglected. In this paper, we study how project maintainers experience code review bots. We surveyed 127 maintainers and asked about their expectations and perception of changes incurred by code review bots. Our findings reveal that the most frequent expectations include enhancing the feedback bots provide to developers, reducing the maintenance burden for developers, and enforcing code coverage. While maintainers report that bots satisfied their expectations, they also perceived unexpected effects, such as communication noise and newcomers' dropout. Based on these results, we provide a series of implications for bot developers, as well as insights for future research. 
    more » « less