skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The spatial and temporal dynamics of global meat trade networks
Abstract Rapid increases in meat trade generate complex global networks across countries. However, there has been little research quantifying the dynamics of meat trade networks and the underlying forces that structure them. Using longitudinal network data for 134 countries from 1995 to 2015, we combined network modeling and cluster analysis to simultaneously identify the structural changes in meat trade networks and the factors that influence the networks themselves. The integrated network approach uncovers a general consolidation of global meat trade networks over time, although some global events may have weakened this consolidation both regionally and globally. In consolidated networks, the presence of trade agreements and short geographic distances between pairs of countries are associated with increases in meat trade. Countries with rapid population and income growth greatly depend on meat imports. Furthermore, countries with high food availability import large quantities of meat products to satisfy their various meat preferences. The findings from this network approach provide key insights that can be used to better understand the social and environmental consequences of increasing global meat trade.  more » « less
Award ID(s):
1924111
PAR ID:
10296524
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Antimicrobial resistance is a threat to global health, aggravated by the use of antimicrobials in livestock production. Mitigating the growing economic costs related to antimicrobial use in livestock production requires strong global coordination, and to that end policy makers can leverage global and national food animal trade policies, such as bans and user fees. Evaluation of such policies requires representing the interactions between competing producers in the global meat market, which is usually out of the scope of statistical models. For that, we developed a game-theoretic food system model of global livestock production and trade between 18 countries and aggregate world regions. The model comprises the largest producing and consuming countries, the explicit interconnections between countries, and the use of antimicrobials in food animal production. Our model allows us to provide policy insights beyond standard literature and assess the trade-off between trade, cost of a policy, and antimicrobials-induced productivity. We studied three scenarios: global increased user fees on antimicrobials, a global ban of meat imports from Brazil, and a decrease in China's meat consumption. We found that a user fee that increases the price of antimicrobials by 50% globally leads to a 33% reduction in global antimicrobial use. However, participation of developing and emerging countries in the coordination scheme is jeopardized, since they become less competitive for meat sales compared to developed countries. When meat imports from Brazil are banned globally, importers of Brazil's meat would turn primarily to the U.S. to supplement their demand. Lastly, meeting China's medium-term lower meat consumption target would not affect global antimicrobial use, but could increase China's antimicrobial use by 11%. We highlighted the importance of trade for the outcome of a policy and concluded that global cooperation is required to align the incentives of all countries toward tackling antimicrobial resistance. 
    more » « less
  2. Abstract The rapid development of seafood trade networks alongside the decline in biomass of many marine populations raises important questions about the role of global trade in fisheries sustainability. Mounting empirical and theoretical evidence shows the importance of trade development on commercially exploited species. However, there is limited understanding of how the development of trade networks, such as differences in connectivity and duration, affects fisheries sustainability. In a global analysis of over 400,000 bilateral trade flows and stock status estimates for 876 exploited fish and marine invertebrates from 223 territories, we reveal patterns between seafood trade network indicators and fisheries sustainability using a dynamic panel regression analysis. We found that fragmented networks with strong connectivity within a group of countries and weaker links between those groups (modularity) are associated with higher relative biomass. From 1995 to 2015, modularity fluctuated, and the number of trade connections (degree) increased. Unlike previous studies, we found no relationship between the number or duration of trade connections and fisheries sustainability. Our results highlight the need to jointly investigate fisheries and trade. Improved coordination and partnerships between fisheries authorities and trade organizations present opportunities to foster more sustainable fisheries. 
    more » « less
  3. Abstract Extreme weather poses a major challenge to global food security by causing sharp drops in crop yield and supply. International crop trade can potentially alleviate such challenge by reallocating crop commodities. However, the influence of extreme weather stress and synchronous crop yield anomalies on trade linkages among countries remains unexplored. Here we use the international wheat trade network, develop two network-based covariates (i.e., difference in extreme weather stress and short-term synchrony of yield fluctuations between countries), and test specialized statistical and machine-learning methods. We find that countries with larger differences in extreme weather stress and synchronous yield variations tend to be trade partners and with higher trade volumes, even after controlling for factors conventionally implemented in international trade models (e.g., production level and trade agreement). These findings highlight the need to improve the current international trade network by considering the patterns of extreme weather stress and yield synchrony among countries. 
    more » « less
  4. With the rapid expansion of mobile phone networks in developing countries, large-scale graph machine learning has gained sudden relevance in the study of global poverty. Recent applications range from humanitarian response and poverty estimation to urban planning and epidemic containment. Yet the vast majority of computational tools and algorithms used in these applications do not account for the multi-view nature of social networks: people are related in myriad ways, but most graph learning models treat relations as binary. In this paper, we develop a graph-based convolutional network for learning on multi-view networks. We show that this method outperforms state-of-the-art semi-supervised learning algorithms on three different prediction tasks using mobile phone datasets from three different developing countries. We also show that, while designed specifically for use in poverty research, the algorithm also outperforms existing benchmarks on a broader set of learning tasks on multi-view networks, including node labelling in citation networks. 
    more » « less
  5. Kidney trade has been on the rise despite the domestic and international law enforcement aiming to protect the vulnerable population from potential exploitation. Regional hubs are emerging in several parts of the world including South Asia, Central America, the Middle East and East Asia. Kidney trade networks reported in these hot spots are often complex systems involving several players such as buyers, sellers and surgery countries operating across international borders so that they can bypass domestic laws in sellers and buyers’ countries. The exact patterns of the country networks are, however, largely unknown due to the lack of a systematic approach to collect the data. Most of the kidney trade information is currently available in the form of case studies, court materials and news articles or reports, and no comprehensive database exists at this time. The present study thus explored online newspaper scraping to systematically collect 10 419 news articles from 24 major English newspapers in South Asia (January 2016 to May 2019) and build transnational kidney trade networks at the country level. Additionally, this study applied text mining techniques to extract words from each news article and developed machine learning algorithms to identify kidney trade and non-kidney trade news articles. Our findings suggest that online newspaper scraping coupled with the machine learning method is a promising approach to compile such data, especially in the dire shortage of empirical data. 
    more » « less