The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.
Extreme weather poses a major challenge to global food security by causing sharp drops in crop yield and supply. International crop trade can potentially alleviate such challenge by reallocating crop commodities. However, the influence of extreme weather stress and synchronous crop yield anomalies on trade linkages among countries remains unexplored. Here we use the international wheat trade network, develop two network-based covariates (i.e., difference in extreme weather stress and short-term synchrony of yield fluctuations between countries), and test specialized statistical and machine-learning methods. We find that countries with larger differences in extreme weather stress and synchronous yield variations tend to be trade partners and with higher trade volumes, even after controlling for factors conventionally implemented in international trade models (e.g., production level and trade agreement). These findings highlight the need to improve the current international trade network by considering the patterns of extreme weather stress and yield synchrony among countries.
more » « less- Award ID(s):
- 1739823
- PAR ID:
- 10378297
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
International trade research plays an important role to inform trade policy and shed light on wider economic issues. With recent advances in information technology, economic agencies distribute an enormous amount of internationally comparable trading data, providing a gold mine for empirical analysis of international trade. International trading data can be viewed as a dynamic transport network because it emphasizes the amount of goods moving across network edges. Most literature on dynamic network analysis concentrates on parametric modeling of the connectivity network that focuses on link formation or deformation rather than the transport moving across the network. We take a different non-parametric perspective from the pervasive node-and-edge-level modeling: the dynamic transport network is modeled as a time series of relational matrices; variants of the matrix factor model of Wang et al. (2019) are applied to provide a specific interpretation for the dynamic transport network. Under the model, the observed surface network is assumed to be driven by a latent dynamic transport network with lower dimensions. Our method is able to unveil the latent dynamic structure and achieves the goal of dimension reduction. We applied the proposed method to a dataset of monthly trading volumes among 24 countries (and regions) from 1982 to 2015. Our findings shed light on trading hubs, centrality, trends, and patterns of international trade and show matching change points to trading policies. The dataset also provides a fertile ground for future research on international trade.
-
Abstract Millions of people displaced by conflicts have found refuge in water-scarce countries, where their perceived effect on water availability has shaped local water security discourses. Using an annual global data set, we explain the effects of refugee migrations on the host countries’ water stress through the food demand displaced by refugees and the water necessary to produce that food. The water footprint of refugee displacement increased by nearly 75% globally between 2005 and 2016. Although minimal in most countries, implications can be severe in countries already facing severe water stress. For example, refugees may have contributed up to 75 percentage points to water stress in Jordan. While water considerations should not, alone, determine trade and migration policy, we find that small changes to current international food supply flows and refugee resettlement procedures can potentially ease the effect of refugee displacement on water stress in water-vulnerable countries.
-
Abstract Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (−4.6 ± 1.0%/°C) than by WS (−1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2might be overestimated in crop models, because elevated CO2brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.
-
Abstract Environmental stresses greatly limit crop yield. With the increase in extreme weather events due to climate change and the constant pressure of diseases and pests, there is an urgent need to develop crop varieties that can tolerate multiple stresses. However, our knowledge of how plants broadly respond to stress is limited. Here, we explore the rice core stress response via meta-analysis of publicly available rice transcriptome data. Our results confirm that rice universally down-regulates photosynthesis in response to both abiotic and biotic stress. Rice also generally up-regulates hormone-responsive genes during stress response, most notably genes in the abscisic acid, jasmonic acid and salicylic acid pathways. We identified several promoter motifs that are likely involved in stress-responsive regulatory mechanisms in rice. With this work, we provide a list of candidate genes to study for improving rice stress tolerance in light of environmental stresses. This work also serves as a proof of concept to show that meta-analysis of diverse transcriptome data is a valid approach to develop robust hypotheses for how plants respond to stress.