Extended Berkeley Packet Filter (BPF) is a language and run-time system that allows non-superusers to extend the Linux and Windows operating systems by downloading user code into the kernel. To ensure that user code is safe to run in kernel context, BPF relies on a static analyzer that proves properties about the code, such as bounded memory access and the absence of operations that crash. The BPF static analyzer checks safety using abstract interpretation with several abstract domains. Among these, the domain of tnums (tristate numbers) is a key domain used to reason about the bitwise uncertainty in program values. This paper formally specifies the tnum abstract domain and its arithmetic operators. We provide the first proofs of soundness and optimality of the abstract arithmetic operators for tnum addition and subtraction used in the BPF analyzer. Further, we describe a novel sound algorithm for multiplication of tnums that is more precise and efficient (runs 33% faster on average) than the Linux kernel's algorithm. Our tnum multiplication is now merged in the Linux kernel.
Synthesizing safe and efficient kernel extensions for packet processing
Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data.
BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations.
We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per more »
- Publication Date:
- NSF-PAR ID:
- 10296555
- Journal Name:
- ACM SIGCOMM'21
- Page Range or eLocation-ID:
- 50 to 64
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
This paper describes our experience applying formal meth- ods to a critical component in the Linux kernel, the just-in-time compilers (“JITs”) for the Berkeley Packet Filter (BPF) virtual machine. We verify these JITs using Jitterbug, the first frame- work to provide a precise specification of JIT correctness that is capable of ruling out real-world bugs, and an automated proof strategy that scales to practical implementations. Using Jitterbug, we have designed, implemented, and verified a new BPF JIT for 32-bit RISC-V, found and fixed 16 previously unknown bugs in five other deployed JITs, and developed new JIT optimizations; all of these changes have been upstreamed to the Linux kernel. The results show that it is possible to build a verified component within a large, unverified system with careful design of specification and proof strategy.
-
Virtual memory, specifically paging, is undergoing significant innovation due to being challenged by new demands from modern workloads. Recent work has demonstrated an alternative software only design that can result in simplified hardware requirements, even supporting purely physical addressing. While we have made the case for this Compiler- And Runtime-based Address Translation (CARAT) concept, its evaluation was based on a user-level prototype. We now report on incorporating CARAT into a kernel, forming Compiler- And Runtime-based Address Translation for CollAborative Kernel Environments (CARAT CAKE). In our implementation, a Linux-compatible x64 process abstraction can be based either on CARAT CAKE, or on a sophisticated paging implementation. Implementing CARAT CAKE involves kernel changes and compiler optimizations/transformations that must work on all code in the system, including kernel code. We evaluate CARAT CAKE in comparison with paging and find that CARAT CAKE is able to achieve the functionality of paging (protection, mapping, and movement properties) with minimal overhead. In turn, CARAT CAKE allows significant new benefits for systems including energy savings, larger L1 caches, and arbitrary granularity memory management.
-
Software APIs exhibit rich diversity and complexity which not only renders them a common source of programming errors but also hinders program analysis tools for checking them. Such tools either expect a precise API specification, which requires program analysis expertise, or presume that correct API usages follow simple idioms that can be automatically mined from code, which suffers from poor accuracy. We propose a new approach that allows regular programmers to find API misuses. Our approach interacts with the user to classify valid and invalid usages of each target API method. It minimizes user burden by employing an active learning algorithm that ranks API usages by their likelihood of being invalid. We implemented our approach in a tool called ARBITRAR for C/C++ programs, and applied it to check the uses of 18 API methods in 21 large real-world programs, including OpenSSL and Linux Kernel. Within just 3 rounds of user interaction on average per API method, ARBITRAR found 40 new bugs, with patches accepted for 18 of them. Moreover, ARBITRAR finds all known bugs reported by a state-of-the-art tool APISAN in a benchmark suite comprising 92 bugs with a false positive rate of only 51.5% compared to APISAN’s 87.9%