skip to main content

Title: Relativistic nucleon–nucleon potentials in a spin-dependent three-dimensional approach
Abstract The matrix elements of relativistic nucleon–nucleon ( NN ) potentials are calculated directly from the nonrelativistic potentials as a function of relative NN momentum vectors, without a partial wave decomposition. To this aim, the quadratic operator relation between the relativistic and nonrelativistic NN potentials is formulated in momentum-helicity basis states. It leads to a single integral equation for the two-nucleon (2 N ) spin-singlet state, and four coupled integral equations for two-nucleon spin-triplet states, which are solved by an iterative method. Our numerical analysis indicates that the relativistic NN potential obtained using CD-Bonn potential reproduces the deuteron binding energy and neutron-proton elastic scattering differential and total cross-sections with high accuracy.
Authors:
; ;
Award ID(s):
2000029
Publication Date:
NSF-PAR ID:
10296609
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We present a method to determine the leading-order (LO) contact term contributing to the nn → ppe − e − amplitude through the exchange of light Majorana neutrinos. Our approach is based on the representation of the amplitude as the momentum integral of a known kernel (proportional to the neutrino propagator) times the generalized forward Compton scattering amplitude n ( p 1 ) n ( p 2 ) W + ( k ) → $$ p\left({p}_1^{\prime}\right)p\left({p}_2^{\prime}\right){W}^{-}(k) $$ p p 1 ′ p p 2 ′ W − k , in analogy to the Cottingham formula for the electromagnetic contribution to hadron masses. We construct model-independent representations of the integrand in the low- and high-momentum regions, through chiral EFT and the operator product expansion, respectively. We then construct a model for the full amplitude by interpolating between these two regions, using appropriate nucleon factors for the weak currents and information on nucleon-nucleon ( NN ) scattering in the 1 S 0 channel away from threshold. By matching the amplitude obtained in this way to the LO chiral EFT amplitude we obtain the relevant LO contact term and discuss various sources of uncertainty. We validate the approach by computing themore »analog I = 2 NN contact term and by reproducing, within uncertainties, the charge-independence-breaking contribution to the 1 S 0 NN scattering lengths. While our analysis is performed in the $$ \overline{\mathrm{MS}} $$ MS ¯ scheme, we express our final result in terms of the scheme-independent renormalized amplitude $$ {\mathcal{A}}_{\nu}\left(\left|\mathbf{p}\right|,\left|\mathbf{p}^{\prime}\right|\right) $$ A ν p p ′ at a set of kinematic points near threshold. We illustrate for two cutoff schemes how, using our synthetic data for $$ {\mathcal{A}}_{\nu } $$ A ν , one can determine the contact-term contribution in any regularization scheme, in particular the ones employed in nuclear-structure calculations for isotopes of experimental interest.« less
  2. Abstract The electronic structure of magnetic lanthanide atoms is fascinating from a fundamental perspective. They have electrons in a submerged open 4f shell lying beneath a filled 6s shell with strong relativistic correlations leading to a large magnetic moment and large electronic orbital angular momentum. This large angular momentum leads to strong anisotropies, i. e. orientation dependencies, in their mutual interactions. The long-ranged molecular anisotropies are crucial for proposals to use ultracold lanthanide atoms in spin-based quantum computers, the realization of exotic states in correlated matter, and the simulation of orbitronics found in magnetic technologies. Short-ranged interactions and bond formation among these atomic species have thus far not been well characterized. Efficient relativistic computations are required. Here, for the first time we theoretically determine the electronic and ro-vibrational states of heavy homonuclear lanthanide Er 2 and Tm 2 molecules by applying state-of-the-art relativistic methods. In spite of the complexity of their internal structure, we were able to obtain reliable spin–orbit and correlation-induced splittings between the 91 Er 2 and 36 Tm 2 electronic potentials dissociating to two ground-state atoms. A tensor analysis allows us to expand the potentials between the atoms in terms of a sum of seven spin–spin tensor operatorsmore »simplifying future research. The strengths of the tensor operators as functions of atom separation are presented and relationships among the strengths, derived from the dispersive long-range interactions, are explained. Finally, low-lying spectroscopically relevant ro-vibrational energy levels are computed with coupled-channels calculations and analyzed.« less
  3. A bstract The inclusive production of the J/ ψ and ψ (2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 8 . 16 TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals − 4 . 46 < y cms < − 2 . 96 (Pb-going direction) and 2 . 03 < y cms < 3 . 53 (p-going direction), down to zero transverse momentum ( p T ). The J/ ψ and ψ (2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The p T -differential J/ ψ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average 〈 p T 〉 and $$ \left\langle {p}_{\mathrm{T}}^2\right\rangle $$ p T 2 values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states ismore »observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/ ψ increases from below unity in peripheral collisions to above unity in central collisions, while for the ψ (2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects.« less
  4. Deep-inelastic scattering of electrons on a nucleon is a primary source of information about parton distribution functions (PDF) and transverse momentum distributions (TMD). The calculation of the QED corrections to SIDIS with any predetermined accuracy is crucial for studies of the 3D structure of the nucleon at JLab and future Electron Ion Collider (EIC). A majority of approved physics experiments that will be running with 12-GeV electron beams at JLab to study the nucleon structure require per-cent level accuracies in the measurements of differential cross sections and polarization asymmetries. Neglecting electromagnetic corrections may lead to significant mis-interpretation of data. Analysis of T-odd singe spin asymmetries (SSA) in SIDIS, p (e, e'h) X, is based on an assumption that purely electromagnetic T-odd effects are negligible.
  5. Abstract The formation of clusters at sub-saturation densities, as a result of many-body correlations, constitutes an essential feature for a reliable modelization of the nuclear matter equation of state (EoS). Phenomenological models that make use of energy density functionals (EDFs) offer a convenient approach to account for the presence of these bound states of nucleons when introduced as additional degrees of freedom. However, in these models clusters dissolve, by construction, when the nuclear saturation density is approached from below, revealing inconsistencies with recent findings that evidence the existence of short-range correlations (SRCs) even at larger densities. The idea of this work is to incorporate SRCs in established models for the EoS, in light of the importance of these features for the description of heavy-ion collisions, nuclear structure and in the astrophysical context. Our aim is to describe SRCs at supra-saturation densities by using effective quasi-clusters immersed in dense matter as a surrogate for correlations, in a regime where cluster dissolution is usually predicted in phenomenological models. Within the EDF framework, we explore a novel approach to embed SRCs within a relativistic mean-field model with density dependent couplings through the introduction of suitable in-medium modifications of the cluster properties, in particularmore »their binding energy shifts, which are responsible for describing the cluster dissolution. As a first exploratory step, the example of a quasi-deuteron within the generalized relativistic density functional approach is investigated. The zero temperature case is examined, where the deuteron fraction is given by the density of a boson condensate. For the first time, suitable parameterizations of the cluster mass shift at zero temperature are derived for all baryon densities. They are constrained by experimental results for the effective deuteron fraction in nuclear matter near saturation and by microscopic many-body calculations in the low-density limit. A proper description of well-constrained nuclear matter quantities at saturation is kept through a refit of the nucleon meson coupling strengths. The proposed parameterizations allow to also determine the density dependence of the quasi-deuteron mass fraction at arbitrary isospin asymmetries. The strength of the deuteron-meson couplings is assessed to be of crucial importance. Novel effects on some thermodynamic quantities, such as the matter incompressibility, the symmetry energy and its slope, are finally discerned and discussed. The findings of the present study represent a first step to improve the description of nuclear matter and its EoS at supra-saturation densities in EDFs by considering correlations in an effective way. In a next step, the single-particle momentum distributions in nuclear matter can be explored using proper wave functions of the quasi-deuteron in the medium. The momentum distributions are expected to exhibit a high-momentum tail, as observed in the experimental study of SRCs by nucleon knockout with high-energy electrons. This will be studied in a forthcoming publication with an extensive presentation of the theoretical method and the results.« less