skip to main content


Search for: All records

Award ID contains: 2000029

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the ground-state properties of $\prescript{6}{YY}{\text{He}}$ double hyperon for $\lla$ and $\ooa$ nuclei in a three-body model $(Y+Y+\alpha)$. We solve two coupled Faddeev equations corresponding to three-body configurations $(\alpha Y,Y)$ and $(YY, \alpha)$ in configuration space with the hyperspherical harmonics expansion method by employing the most recent hyperon-hyperon interactions obtained from lattice QCD simulations. Our numerical analysis for $\lla$, using three $\Lambda\Lambda$ lattice interaction models, leads to a ground state binding energy in the domain $(-7.468, -7.804)$ MeV and the separations $\langle r_{\Lambda-\Lambda} \rangle$ and $\langle r_{\alpha-\Lambda} \rangle$ in the domains $(3.555, 3.629)$ fm and $(2.867 , 2.902 )$ fm, correspondingly. The binding energy of double-$\Omega$ hypernucleus $\ooa$ leads to $-67.21$ MeV and consequently to smaller separations $\langle r_{\Omega-\Omega} \rangle = 1.521$ fm and $\langle r_{\alpha-\Omega} \rangle = 1.293 $ fm. Besides the geometrical properties, we study the structure of ground-state wave functions and show that the main contributions are from the $s-$wave channels. Our results are consistent with the existing theoretical and experimental data. 
    more » « less
  2. null (Ed.)
    Abstract The matrix elements of relativistic nucleon–nucleon ( NN ) potentials are calculated directly from the nonrelativistic potentials as a function of relative NN momentum vectors, without a partial wave decomposition. To this aim, the quadratic operator relation between the relativistic and nonrelativistic NN potentials is formulated in momentum-helicity basis states. It leads to a single integral equation for the two-nucleon (2 N ) spin-singlet state, and four coupled integral equations for two-nucleon spin-triplet states, which are solved by an iterative method. Our numerical analysis indicates that the relativistic NN potential obtained using CD-Bonn potential reproduces the deuteron binding energy and neutron-proton elastic scattering differential and total cross-sections with high accuracy. 
    more » « less