skip to main content


Title: GazeGraph: graph-based few-shot cognitive context sensing from human visual behavior
In this work, we present GazeGraph, a system that leverages human gazes as the sensing modality for cognitive context sensing. GazeGraph is a generalized framework that is compatible with different eye trackers and supports various gaze-based sensing applications. It ensures high sensing performance in the presence of heterogeneity of human visual behavior, and enables quick system adaptation to unseen sensing scenarios with few-shot instances. To achieve these capabilities, we introduce the spatial-temporal gaze graphs and the deep learning-based representation learning method to extract powerful and generalized features from the eye movements for context sensing. Furthermore, we develop a few-shot gaze graph learning module that adapts the `learning to learn' concept from meta-learning to enable quick system adaptation in a data-efficient manner. Our evaluation demonstrates that GazeGraph outperforms the existing solutions in recognition accuracy by 45% on average over three datasets. Moreover, in few-shot learning scenarios, GazeGraph outperforms the transfer learning-based approach by 19% to 30%, while reducing the system adaptation time by 80%.  more » « less
Award ID(s):
1908051
NSF-PAR ID:
10296635
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 18th Conference on Embedded Networked Sensor Systems
Page Range / eLocation ID:
422 to 435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in eye tracking have given birth to a new genre of gaze-based context sensing applications, ranging from cognitive load estimation to emotion recognition. To achieve state-of-the-art recognition accuracy, a large-scale, labeled eye movement dataset is needed to train deep learning-based classifiers. However, due to the heterogeneity in human visual behavior, as well as the labor-intensive and privacy-compromising data collection process, datasets for gaze-based activity recognition are scarce and hard to collect. To alleviate the sparse gaze data problem, we present EyeSyn, a novel suite of psychology-inspired generative models that leverages only publicly available images and videos to synthesize a realistic and arbitrarily large eye movement dataset. Taking gaze-based museum activity recognition as a case study, our evaluation demonstrates that EyeSyn can not only replicate the distinct pat-terns in the actual gaze signals that are captured by an eye tracking device, but also simulate the signal diversity that results from different measurement setups and subject heterogeneity. Moreover, in the few-shot learning scenario, EyeSyn can be readily incorporated with either transfer learning or meta-learning to achieve 90% accuracy, without the need for a large-scale dataset for training. 
    more » « less
  2. This study proposes a novel methodology for modeling driver takeover behavior in conditionally automated vehicles (AVs) when exiting a freeway using deep learning (DL) network architectures. While previous research has focused on modeling takeover time in emergency scenarios, which require quick responses, these models may not be applicable to scheduled, non-time-critical takeovers. In such situations, drivers may employ varying strategies and take longer to resume control of the vehicle when there is no time pressure. To address this problem, a deep learning architecture based on a convolutional neural network (CNN) was implemented to predict drivers’ takeover behaviors in scheduled takeovers. The model was trained on drivers’ driving data and eye gaze with varying time windows, facilitating an analysis of drivers’ takeover decisions to various takeover request designs. The model achieved good performance metrics, with an F1 Score of 0.993, a recall of 0.996, and a precision of 0.991. The application of these models holds substantial potential for refining the design of the human-machine interface, specifically in calibrating the takeover request (ToR) lead time, thereby promoting safe freeway exiting takeovers in conditionally AVs.

     
    more » « less
  3. Existing approaches for learning word embedding often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. How to learn accurate representations of these words to augment a pre-trained embedding by only a few observations is a challenging research problem. In this paper, we formulate the learning of OOV embedding as a few-shot regression problem by fitting a representation function to predict an oracle embedding vector (defined as embedding trained with abundant observations) based on limited contexts. Specifically, we propose a novel hierarchical attention network-based embedding framework to serve as the neural regression function, in which the context information of a word is encoded and aggregated from K observations. Furthermore, we propose to use Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing an accurate embedding for OOV words and improves downstream tasks when the embedding is utilized. 
    more » « less
  4. Natural disasters can have devastating consequences for communities, causing loss of life and significant economic damage. To mitigate these impacts, it is crucial to quickly and accurately identify situational awareness and actionable information useful for disaster relief and response organizations. In this paper, we study the use of advanced transformer and contrastive learning models for disaster image classification in a humanitarian context, with focus on state-of-the-art pre-trained vision transformers such as ViT, CSWin and a state-of-the-art pre-trained contrastive learning model, CLIP. We evaluate the performance of these models across various disaster scenarios, including in-domain and cross-domain settings, as well as few- shot learning and zero-shot learning settings. Our results show that the CLIP model outperforms the two transformer models (ViT and CSWin) and also ConvNeXts, a competitive CNN-based model resembling transformers, in all the settings. By improving the performance of disaster image classification, our work can contribute to the goal of reducing the number of deaths and economic losses caused by disasters, as well as helping to decrease the number of people affected by these events. 
    more » « less
  5. For real-world graph data, the node class distribution is inherently imbalanced and long-tailed, which naturally leads to a few-shot learning scenario with limited nodes labeled for newly emerging classes. Existing efforts are carefully designed to solve such a few-shot learning problem via data augmentation, learning transferable initialization, to name a few. However, most, if not all, of them are based on a strong assumption that all the test nodes must exclusively come from novel classes, which is impractical in real-world applications. In this paper, we study a broader and more realistic problem named generalized few-shot node classification, where the test samples can be from both novel classes and base classes. Compared with the standard fewshot node classification, this new problem imposes several unique challenges, including asymmetric classification and inconsistent preference. To counter those challenges, we propose a shot-aware graph neural network (STAGER) equipped with an uncertainty-based weight assigner module for adaptive propagation. To formulate this problem from the meta-learning perspective, we propose a new training paradigm named imbalanced episodic training to ensure the label distribution is consistent between the training and test scenarios. Experiment results on four real-world datasets demonstrate the efficacy of our model, with up to 14% accuracy improvement over baselines. 
    more » « less