Algorithms for the estimation of gaze direction from mobile and video-based eye trackers typically involve tracking a feature of the eye that moves through the eye camera image in a way that covaries with the shifting gaze direction, such as the center or boundaries of the pupil. Tracking these features using traditional computer vision techniques can be difficult due to partial occlusion and environmental reflections. Although recent efforts to use machine learning (ML) for pupil tracking have demonstrated superior results when evaluated using standard measures of segmentation performance, little is known of how these networks may affect the quality of the final gaze estimate. This work provides an objective assessment of the impact of several contemporary ML-based methods for eye feature tracking when the subsequent gaze estimate is produced using either feature-based or model-based methods. Metrics include the accuracy and precision of the gaze estimate, as well as drop-out rate.
more »
« less
Neural 3D Gaze: 3D Pupil Localization and Gaze Tracking based on Anatomical Eye Model and Neural Refraction Correction
Eye tracking has already made its way to current commercial wearable display devices, and is becoming increasingly important for virtual and augmented reality applications. However, the existing model-based eye tracking solutions are not capable of conducting very accurate gaze angle measurements, and may not be sufficient to solve challenging display problems such as pupil steering or eyebox expansion. In this paper, we argue that accurate detection and localization of pupil in 3D space is a necessary intermediate step in model-based eye tracking. Existing methods and datasets either ignore evaluating the accuracy of 3D pupil localization or evaluate it only on synthetic data. To this end, we capture the first 3D pupilgaze-measurement dataset using a high precision setup with head stabilization and release it as the first benchmark dataset to evaluate both 3D pupil localization and gaze tracking methods. Furthermore, we utilize an advanced eye model to replace the commonly used oversimplified eye model. Leveraging the eye model, we propose a novel 3D pupil localization method with a deep learning-based corneal refraction correction. We demonstrate that our method outperforms the state-of-the-art works by reducing the 3D pupil localization error by 47.5% and the gaze estimation error by 18.7%. Our dataset and codes can be found here: link.
more »
« less
- Award ID(s):
- 2107454
- PAR ID:
- 10389246
- Date Published:
- Journal Name:
- Proccedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
- Page Range / eLocation ID:
- 375 to 383
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null; null; null; null; null; null; null; null (Ed.)Effective assisted living environments must be able to perform inferences on how their occupants interact with their environment. Gaze direction provides strong indications of how people interact with their surroundings. In this paper, we propose a gaze tracking method that uses a neural network regressor to estimate gazes from keypoints and integrates them over time using a moving average mechanism. Our gaze regression model uses confidence gated units to handle cases of keypoint occlusion and estimate its own prediction uncertainty. Our temporal approach for gaze tracking incorporates these prediction uncertainties as weights in the moving average scheme. Experimental results on a dataset collected in an assisted living facility demonstrate that our gaze regression network performs on par with a complex, dataset-specific baseline, while its uncertainty predictions are highly correlated with the actual angular error of corresponding estimations. Finally, experiments on videos sequences show that our temporal approach generates more accurate and stable gaze predictions.more » « less
-
Researchers have been employing psycho-physiological measures to better understand program comprehension, for example simultaneous fMRI and eye tracking to validate top-down comprehension models. In this paper, we argue that there is additional value in eye-tracking data beyond eye gaze: Pupil dilation and blink rates may offer insights into programmers' cognitive load. However, the fMRI environment may influence pupil dilation and blink rates, which would diminish their informative value. We conducted a preliminary analysis of pupil dilation and blink rates of an fMRI experiment with 22 student participants. We conclude from our preliminary analysis that the correction for our fMRI environment is challenging, but possible, such that we can use pupil dilation and blink rates to more reliably observe program comprehension.more » « less
-
Virtual Reality (VR) headsets with embedded eye trackers are appearing as consumer devices (e.g. HTC Vive Eye, FOVE). These devices could be used in VR-based education (e.g., a virtual lab, a virtual field trip) in which a live teacher guides a group of students. The eye tracking could enable better insights into students’ activities and behavior patterns. For real-time insight, a teacher’s VR environment can display student eye gaze. These visualizations would help identify students who are confused/distracted, and the teacher could better guide them to focus on important objects. We present six gaze visualization techniques for a VR-embedded teacher’s view, and we present a user study to compare these techniques. The results suggest that a short particle trail representing eye trajectory is promising. In contrast, 3D heatmaps (an adaptation of traditional 2D heatmaps) for visualizing gaze over a short time span are problematic.more » « less
-
Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eye-tracking research directions.more » « less