skip to main content


Title: Human-Infrastructure Interactional Dynamics: Simulating COVID-19 Pandemic Regime Shifts
When subject to disruptive events, the dynamics of human-infrastructure interactions can absorb, adapt, or, in a more abrupt manner, undergo substantial change. These changes are commonly studied when a disruptive event perturbs the physical infrastructure. Infrastructure breakdown is, thus, an indicator of the tipping point, and possible regime shift, in the human-infrastructure interactions. However, determining the likelihood of a regime shift during a global pandemic, where no infrastructure breakdown occurs, is unclear. In this study, we explore the dynamics of human-infrastructure interactions during the global COVID-19 pandemic for the entire United States and determine the likelihood of regime shifts in human interactions with six different categories of infrastructure. Our results highlight the impact of state-level characteristics, executive decisions, as well as the extent of impact by the pandemic as predictors of either undergoing or surviving regime shifts in human-infrastructure interactions.  more » « less
Award ID(s):
1837021
NSF-PAR ID:
10296646
Author(s) / Creator(s):
;
Editor(s):
Bae, K.-H.; Feng, B.; Kim, S.; Lazarova-Molnar, S.; Zheng, Z.; Roeder, T.; Thiesing, R.
Date Published:
Journal Name:
Proceedings of the 2020 Winter Simulation Conference
Page Range / eLocation ID:
727 to 735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multiple stressors acting simultaneously on ecological communities are the new normal state. Stressor number and strength will increase with rising anthropogenic activity, making it critical to understand both stressor effects and interactions. Stressor temporal regimes vary in intensity, frequency, and duration, ranging from press to pulse. While stressors with different temporal regimes likely have divergent effects, this remains mostly unexplored, though there is some evidence communities are more resistant to pulse than press stressors. Coral reefs are among the most impacted marine communities, and degradation from coral to algal dominance has been attributed to increases in both local and global stressors. Overfishing, nutrient pollution, and increased sedimentation are all local stressors that have been implicated in shift dynamics. Nutrients and sediments are anthropogenically derived stressors to reefs that can have press and pulse temporal regimes. We conducted a 6‐month fully crossed factorial field experiment on algal turf communities in Moorea, French Polynesia, manipulating access by herbivores, enrichment regime, and sedimentation regime and tracked changes in benthic community composition. We found complex interactions among stressors and stressor regimes drove a series of transitions from healthy, short algal turf communities to degraded, long algal turfs, and ultimately to macroalgal‐dominated communities. While herbivory controlled final community composition after 6 months, 2‐ and 3‐way interactions among nutrient and sediment temporal stressor regimes over time drove transition dynamics, and matching of stressor temporal regimes accelerated shifts. Some stressors cryptically eroded the resilience of the community, which was only evident when the strong ecological processes that masked these effects were disrupted. Our research highlights the need to consider temporal stressor regime as well as stressor interactions, particularly in light of predicted increases in both local and global stressors and alterations to stressor temporal regimes. Our understanding of the impacts of local stressor temporal regimes is in its infancy. Here, we provide a novel demonstration that the effects of stressor temporal regime varied and multiple stressors interacted to exhibit complex, emergent interaction effects, demonstrating the need to explicitly contrast stressor temporal regimes under multiple conditions to understand how communities will respond to future challenges.

     
    more » « less
  2. Abstract

    Globally, anthropogenic pressures are reducing the abundances of marine species and altering ecosystems through modification of trophic interactions. Yet, consumer declines also disrupt important bottom‐up processes, like nutrient recycling, which are critical for ecosystem functioning. Consumer‐mediated nutrient dynamics (CND) is now considered a major biogeochemical component of most ecosystems, but lacking long‐term studies, it is difficult to predict how CND will respond to accelerating disturbances in the wake of global change. To aid such predictions, we coupled empirical ammonium excretion rates with an 18‐year time series of the standing biomass of common benthic macroinvertebrates in southern California kelp forests. This time series of excretion rates encompassed an extended period of extreme ocean warming, disease outbreaks, and the abolishment of fishing at two of our study sites, allowing us to assess kelp forest CND across a wide range of environmental conditions. At their peak, reef invertebrates supplied an average of 18.3 ± 3.0 µmol NH4+ m−2 hr−1to kelp forests when sea stars were regionally abundant, but dropped to 3.5 ± 1.0 µmol NH4+ m−2 hr−1following their mass mortality due to disease during a prolonged period of extreme warming. However, a coincident increase in the abundance of the California spiny lobster,Palinurus interupptus(Randall, 1840), likely in response to both reduced fishing and a warmer ocean, compensated for much of the recycled ammonium lost to sea star mortality. Both lobsters and sea stars are widely recognized as key predators that can profoundly influence community structure in benthic marine systems. Our study is the first to demonstrate their importance in nutrient cycling, thus expanding their roles in the ecosystem. Climate change is increasing the frequency and severity of warming events, and rising human populations are intensifying fishing pressure in coastal ecosystems worldwide. Our study documents how these projected global changes can drive regime shifts in CND and fundamentally alter a critical ecosystem function.

     
    more » « less
  3. Sekercioglu, C. ; Meynard, C.N. (Ed.)
    As species’ ranges shift in response to human-induced global changes, species interac- tions are expected to play a large role in shaping the resultant range dynamics and, subsequently, the composition of modified species assemblages. Most research on the impact of species interactions on range dynamics focuses on the effects of trophic interactions and exploitative competition for resources, but an emerging body of work shows that interspecific competition for territories and mates also affects species range shifts. As such, it is paramount to build a strong understanding of how these forms of behavioural interference between species impact landscape-scale patterns. Here, we examine recent (1997–2019) range dynamics of North American passerines to test the hypothesis that behavioural interference impacts the ease with which species move across landscapes. Over this 22 year period, we found that fine-scale spatial overlap between species (syntopy) increased more for species pairs that engage in interspecific territoriality than for those that do not. We found no evidence, however, for an effect of reproductive interference (hybridisation) on syntopy, and no effect of either type of interference on range-wide overlap (sympatry). Examining the net effects of species interactions on continent-scale range shifts may require species occurrence data span- ning longer time periods than are currently available for North American passerines, but our results show that interspecific territoriality has had an overall stabilising influ- ence on species coexistence over the past two decades. 
    more » « less
  4. Marilyn J. Roossinck (Ed.)
    Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus–host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean—the physical, chemical, and biological landscape—influences the likelihood of both virus–host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean. 
    more » « less
  5. Abstract

    The predicted intensification of the North American Monsoon is expected to alter growing season rainfall patterns in the southwestern United States. These patterns, which have historically been characterized by frequent small rain events, are anticipated to shift towards a more extreme precipitation regime consisting of fewer, but larger rain events. Furthermore, human activities are contributing to increased atmospheric nitrogen deposition throughout this dryland region.

    Alterations in rainfall size and frequency, along with changes in nitrogen availability, are likely to have significant consequences for above‐ground net primary production (ANPP) and plant community dynamics in drylands. The conceptual bucket model predicts that a shift towards fewer, but larger rain events could promote greater rates of ANPP in these regions by maintaining soil moisture availability above drought stress thresholds for longer periods during the growing season. However, only a few short‐term studies have tested this hypothesis, and none have explored the interaction between altered rainfall patterns and nitrogen enrichment.

    To address this knowledge gap, we conducted a 14‐year rainfall addition and nitrogen fertilization experiment in a northern Chihuahuan Desert grassland to explore the long‐term impacts of changes in monsoon rainfall size and frequency, along with chronic nitrogen enrichment, on ANPP (measured as peak biomass) and plant community dynamics.

    Contrary to bucket model predictions, small frequent rain events promoted comparable rates of ANPP to large infrequent rain events in the absence of nitrogen enrichment. It was only when nitrogen limitation was alleviated that large infrequent rain events resulted in the greatest ANPP. Furthermore, we found that nitrogen enrichment had the greatest impact on plant community composition under the small frequent rainfall regime.

    Synthesis. Our long‐term field experiment highlights limitations of the bucket model by demonstrating that water and nitrogen availability sequentially limit dryland ecological processes. Specifically, our findings suggest that while water availability is the primary limiting factor for above‐ground net primary production in these ecosystems, nitrogen limitation becomes increasingly important when water is not limiting. Moreover, our findings reveal that small frequent rain events play an important but underappreciated role in driving dryland ecosystem dynamics.

     
    more » « less