skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Examining human mobility changes during COVID-19 across socioeconomic groups: a comparative analysis of San Diego County and New York City
Abstract The COVID-19 pandemic brought unprecedented changes to various aspects of daily life, profoundly affecting human mobility. These changes in mobility patterns were not uniform, as numerous factors, including public health measures, socioeconomic status, and urban infrastructure, influenced them. This study examines human mobility changes during COVID-19 in San Diego County and New York City, employing Latent Profile Analysis (LPA) and various network measures to analyze connectivity and socioeconomic status (SES) within these regions. While many COVID-19 and mobility studies have revealed overall reductions in mobility or changes in mobility patterns, they often fail to specify ’where’ these changes occur and lack a detailed understanding of the relationship between SES and mobility changes. This creates a significant research gap in understanding the spatial and socioeconomic dimensions of mobility changes during the pandemic. This study aims to address this gap by providing a comprehensive analysis of how mobility patterns varied across different socioeconomic groups during the pandemic. By comparing mobility patterns before and during the pandemic, we aim to shed light on how this unprecedented event impacted different communities. Our research contributes to the literature by employing network science to examine COVID-19’s impact on human mobility, integrating SES variables into the analysis of mobility networks. This approach provides a detailed understanding of how social and economic factors influence movement patterns and urban connectivity, highlighting disparities in mobility and access across different socioeconomic groups. The results identify areas functioning as hubs or bridges and illustrate how these roles changed during COVID-19, revealing existing societal inequalities. Specifically, we observed that urban parks and rural areas with national parks became significant mobility hubs during the pandemic, while affluent areas with high educational attainment saw a decline in centrality measures, indicating a shift in urban mobility dynamics and exacerbating pre-existing socioeconomic disparities.  more » « less
Award ID(s):
2043202
PAR ID:
10577927
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Computational Urban Science
Volume:
4
Issue:
1
ISSN:
2730-6852
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The novel coronavirus disease (COVID-19) pandemic has impacted every facet of society. One of the non-pharmacological measures to contain the COVID-19 infection is social distancing. Federal, state, and local governments have placed multiple executive orders for human mobility reduction to slow down the spread of COVID-19. This paper uses geotagged tweets data to reveal the spatiotemporal human mobility patterns during this COVID-19 pandemic in New York City. With New York City open data, human mobility pattern changes were detected by different categories of land use, including residential, parks, transportation facilities, and workplaces. This study further compares human mobility patterns by land use types based on an open social media platform (Twitter) and the human mobility patterns revealed by Google Community Mobility Report cell phone location, indicating that in some applications, open-access social media data can generate similar results to private data. The results of this study can be further used for human mobility analysis and the battle against COVID-19. 
    more » « less
  2. Abstract BackgroundNew York City (NYC) has been one of the hotspots of the COVID‐19 pandemic in the United States. By the end of April 2020, close to 165 000 cases and 13 000 deaths were reported in the city with considerable variability across the city's ZIP codes. ObjectivesIn this study, we examine: (a) the extent to which the variability in ZIP code‐level case positivity can be explained by aggregate markers of socioeconomic status (SES) and daily change in mobility; and (b) the extent to which daily change in mobility independently predicts case positivity. MethodsCOVID‐19 case positivity by ZIP code was modeled using multivariable linear regression with generalized estimating equations to account for within‐ZIP clustering. Daily case positivity was obtained from NYC Department of Health and Mental Hygiene and measures of SES were based on data from the American Community Survey. Changes in human mobility were estimated using anonymized aggregated mobile phone location systems. ResultsOur analysis indicates that the socioeconomic markers considered together explained 56% of the variability in case positivity through April 1 and their explanatory power decreased to 18% by April 30. Changes in mobility during this time period are not likely to be acting as a mediator of the relationship between ZIP‐level SES and case positivity. During the middle of April, increases in mobility were independently associated with decreased case positivity. ConclusionsTogether, these findings present evidence that heterogeneity in COVID‐19 case positivity during NYC’s spring outbreak was largely driven by residents’ SES. 
    more » « less
  3. COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit. 
    more » « less
  4. null (Ed.)
    Abstract Urban nature—such as greenness and parks—can alleviate distress and provide space for safe recreation during the COVID-19 pandemic. However, nature is often less available in low-income populations and communities of colour—the same communities hardest hit by COVID-19. In analyses of two datasets, we quantified inequity in greenness and park proximity across all urbanized areas in the United States and linked greenness and park access to COVID-19 case rates for ZIP codes in 17 states. Areas with majority persons of colour had both higher case rates and less greenness. Furthermore, when controlling for sociodemographic variables, an increase of 0.1 in the Normalized Difference Vegetation Index was associated with a 4.1% decrease in COVID-19 incidence rates (95% confidence interval: 0.9–6.8%). Across the United States, block groups with lower income and majority persons of colour are less green and have fewer parks. Our results demonstrate that the communities most impacted by COVID-19 also have the least nature nearby. Given that urban nature is associated with both human health and biodiversity, these results have far-reaching implications both during and beyond the pandemic. 
    more » « less
  5. null (Ed.)
    Urban nature can alleviate distress and provide space for safe recreation during the COVID-19 pandemic. However, nature is often less available in low-income and communities of color—the same communities hardest hit by COVID-19. We quantified nature inequality across all urbanized areas in the US and linked nature access to COVID-19 case rates for ZIP Codes in 17 states. Areas with majority persons of color had both higher case rates and less greenness. Furthermore, when controlling for socio-demographic variables, an increase of 0.1 in Normalized Difference Vegetation Index (NDVI) was associated with a 4.1% decrease in COVID-19 incidence rates (95% confidence interval: 0.9-6.8%). Across the US, block groups with lower-income and majority persons of color are less green and have fewer parks. Thus, communities most impacted by COVID-19 also have the least nature nearby. Given urban nature is associated with both human health and biodiversity, these results have far-reaching implications both during and beyond the pandemic. 
    more » « less