skip to main content


Title: Sliding-Window QPS (SW-QPS): A Perfect Parallel Iterative Switching Algorithm for Input-Queued Switches
In this work, we first propose a parallel batch switching algorithm called Small-Batch Queue-Proportional Sampling (SB-QPS). Compared to other batch switching algorithms, SB-QPS significantly reduces the batch size without sacrificing the throughput performance and hence has much lower delay when traffic load is light to moderate. It also achieves the lowest possible time complexity of O(1) per matching computation per port, via parallelization. We then propose another algorithm called Sliding-Window QPS (SW-QPS). SW-QPS retains and enhances all benefits of SB-QPS, and reduces the batching delay to zero via a novel switching framework called sliding-window switching. In addition, SW-QPS computes matchings of much higher qualities, as measured by the resulting throughput and delay performances, than QPS-1, the state-of-the-art regular switching algorithm that builds upon the same underlying bipartite matching algorithm.  more » « less
Award ID(s):
1909048
NSF-PAR ID:
10296676
Author(s) / Creator(s):
; ;  
Date Published:
Journal Name:
ACM SIGMETRICS Performance Evaluation Review
Volume:
48
Issue:
3
ISSN:
0163-5999
Page Range / eLocation ID:
71 to 76
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In an input-queued switch, a crossbar schedule, or a matching between the input ports and the output ports needs to be computed for each switching cycle, or time slot. It is a challenging research problem to design switching algorithms that produce high-quality matchings yet have a very low computational complexity when the switch has a large number of ports. Indeed, there appears to be a fundamental tradeoff between the computational complexity of the switching algorithm and the quality of the computed matchings. Parallel maximal matching algorithms (adapted for switching) appear to be a sweet tradeoff point in this regard. On one hand, they provide the following performance guarantees: Using maxi- mal matchings as crossbar schedules results in at least 50% switch throughput and order-optimal (i.e., independent of the switch size 𝑁 ) average delay bounds for various traffic arrival processes. On the other hand, their computational complexities can be as low as 𝑂 (log2 𝑁 ) per port/processor, which is much lower than those of the algorithms for finding matchings of higher qualities such as maximum weighted matching. In this work, we propose QPS-r, a parallel iterative switching algorithm that has the lowest possible computational complexity: 𝑂(1) per port. Yet, the matchings that QPS-r computes have the same quality as maximal matchings in the following sense: Using such matchings as crossbar schedules results in exactly the same aforementioned provable throughput and delay guarantees as using maximal matchings, as we show using Lyapunov stability analysis. Although QPS-r builds upon an existing add-on technique called Queue-Proportional Sampling (QPS), we are the first to discover and prove this nice property of such matchings. We also demon- strate that QPS-3 (running 3 iterations) has comparable empirical throughput and delay performances as iSLIP (running log 𝑁 itera- 2 tions), a refined and optimized representative maximal matching algorithm adapted for switching. 
    more » « less
  2. In an input-queued switch, a crossbar schedule, or a matching between the input ports and the output ports needs to be computed for each switching cycle, or time slot. It is a challenging research problem to design switching algorithms that produce high-quality matchings yet have a very low computational complexity when the switch has a large number of ports. Indeed, there appears to be a fundamental tradeoff between the computational complexity of the switching algorithm and the quality of the computed matchings. Parallel maximal matching algorithms (adapted for switching) appear to be a sweet tradeoff point in this regard. On one hand, they provide the following performance guarantees: Using maxi- mal matchings as crossbar schedules results in at least 50% switch throughput and order-optimal (i.e., independent of the switch size 𝑁 ) average delay bounds for various traffic arrival processes. On the other hand, their computational complexities can be as low as 𝑂 (log_2 𝑁) per port/processor, which is much lower than those of the algorithms for finding matchings of higher qualities such as maximum weighted matching. In this work, we propose QPS-r, a parallel iterative switching algorithm that has the lowest possible computational complexity: 𝑂(1) per port. Yet, the matchings that QPS-r computes have the same quality as maximal matchings in the following sense: Using such matchings as crossbar schedules results in exactly the same aforementioned provable throughput and delay guarantees as using maximal matchings, as we show using Lyapunov stability analysis. Although QPS-r builds upon an existing add-on technique called Queue-Proportional Sampling (QPS), we are the first to discover and prove this nice property of such matchings. We also demon- strate that QPS-3 (running 3 iterations) has comparable empirical throughput and delay performances as iSLIP (running log 𝑁 itera- 2 tions), a refined and optimized representative maximal matching algorithm adapted for switching. 
    more » « less
  3. Krause, Andreas and (Ed.)
    General function approximation is a powerful tool to handle large state and action spaces in a broad range of reinforcement learning (RL) scenarios. However, theoretical understanding of non-stationary MDPs with general function approximation is still limited. In this paper, we make the first such an attempt. We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs, which subsumes majority of existing tractable RL problems in static MDPs as well as non-stationary MDPs. Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA, which features a sliding window mechanism and a new confidence set design for non-stationary MDPs. We then establish an upper bound on the dynamic regret for the proposed algorithm, and show that SW-OPEA is provably efficient as long as the variation budget is not significantly large. We further demonstrate via examples of non-stationary linear and tabular MDPs that our algorithm performs better in small variation budget scenario than the existing UCB-type algorithms. To the best of our knowledge, this is the first dynamic regret analysis in non-stationary MDPs with general function approximation. 
    more » « less
  4. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  5. As network, I/O, accelerator, and NVM devices capable of a million operations per second make their way into data centers, the software stack managing such devices has been shifting from implementations within the operating system kernel to more specialized kernel-bypass approaches. While the in-kernel approach guarantees safety and provides resource multiplexing, it imposes too much overhead on microsecond-scale tasks. Kernel-bypass approaches improve throughput substantially but sacrifice safety and complicate resource management: if applications are mutually distrusting, then either each application must have exclusive access to its own device or else the device itself must implement resource management. This paper shows how to attain both safety and performance via intra-process isolation for data plane libraries. We propose protected libraries as a new OS abstraction which provides separate user-level protection domains for different services (e.g., network and in-memory database), with performance approaching that of unprotected kernel bypass. We also show how this new feature can be utilized to enable sharing of data plane libraries across distrusting applications. Our proposed solution uses Intel's memory protection keys (PKU) in a safe way to change the permissions associated with subsets of a single address space. In addition, it uses hardware watch-points to delay asynchronous event delivery and to guarantee independent failure of applications sharing a protected library. We show that our approach can efficiently protect high-throughput in-memory databases and user-space network stacks. Our implementation allows up to 2.3 million library entrances per second per core, outperforming both kernellevel protection and two alternative implementations that use system calls and Intel's VMFUNC switching of user-level address spaces, respectively. 
    more » « less