skip to main content


Title: INPREM: An Interpretable and Trustworthy Predictive Model for
Building a predictive model based on historical Electronic Health Records (EHRs) for personalized healthcare has become an active research area. Benefiting from the powerful ability of feature ex- traction, deep learning (DL) approaches have achieved promising performance in many clinical prediction tasks. However, due to the lack of interpretability and trustworthiness, it is difficult to apply DL in real clinical cases of decision making. To address this, in this paper, we propose an interpretable and trustworthy predictive model (INPREM) for healthcare. Firstly, INPREM is designed as a linear model for interpretability while encoding non-linear rela- tionships into the learning weights for modeling the dependencies between and within each visit. This enables us to obtain the contri- bution matrix of the input variables, which is served as the evidence of the prediction result(s), and help physicians understand why the model gives such a prediction, thereby making the model more in- terpretable. Secondly, for trustworthiness, we place a random gate (which follows a Bernoulli distribution to turn on or off) over each weight of the model, as well as an additional branch to estimate data noises. With the help of the Monto Carlo sampling and an ob- jective function accounting for data noises, the model can capture the uncertainty of each prediction. The captured uncertainty, in turn, allows physicians to know how confident the model is, thus making the model more trustworthy. We empirically demonstrate that the proposed INPREM outperforms existing approaches with a significant margin. A case study is also presented to show how the contribution matrix and the captured uncertainty are used to assist physicians in making robust decisions.  more » « less
Award ID(s):
1910306
NSF-PAR ID:
10296765
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
KDD
ISSN:
2154-817X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Building a predictive model based on historical Electronic Health Records (EHRs) for personalized healthcare has become an active research area. Benefiting from the powerful ability of feature ex- traction, deep learning (DL) approaches have achieved promising performance in many clinical prediction tasks. However, due to the lack of interpretability and trustworthiness, it is difficult to apply DL in real clinical cases of decision making. To address this, in this paper, we propose an interpretable and trustworthy predictive model (INPREM) for healthcare. Firstly, INPREM is designed as a linear model for interpretability while encoding non-linear rela- tionships into the learning weights for modeling the dependencies between and within each visit. This enables us to obtain the contri- bution matrix of the input variables, which is served as the evidence of the prediction result(s), and help physicians understand why the model gives such a prediction, thereby making the model more in- terpretable. Secondly, for trustworthiness, we place a random gate (which follows a Bernoulli distribution to turn on or off) over each weight of the model, as well as an additional branch to estimate data noises. With the help of the Monto Carlo sampling and an ob- jective function accounting for data noises, the model can capture the uncertainty of each prediction. The captured uncertainty, in turn, allows physicians to know how confident the model is, thus making the model more trustworthy. We empirically demonstrate that the proposed INPREM outperforms existing approaches with a significant margin. A case study is also presented to show how the contribution matrix and the captured uncertainty are used to assist physicians in making robust decisions. 
    more » « less
  2. null (Ed.)
    Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making. 
    more » « less
  3. Abstract Background

    Acute neurological complications are some of the leading causes of death and disability in the U.S. The medical professionals that treat patients in this setting are tasked with deciding where (e.g., home or facility), how, and when to discharge these patients. It is important to be able to predict potential patient discharge outcomes as early as possible during the patient’s hospital stay and to know what factors influence the development of discharge planning. This study carried out two parallel experiments: A multi-class outcome (patient discharge targets of ‘home’, ‘nursing facility’, ‘rehab’, ‘death’) and binary class outcome (‘home’ vs. ‘non-home’). The goal of this study is to develop early predictive models for each experiment exploring which patient characteristics and clinical variables significantly influence discharge planning of patients based on the data that are available only within 24 h of their hospital admission. 

    Method

    Our methodology centers around building and training five different machine learning models followed by testing and tuning those models to find the best-suited predictor for each experiment with a dataset of 5,245 adult patients with neurological conditions taken from the eICU-CRD database.

    Results

    The results of this study show XGBoost to be the most effective model for predicting between four common discharge outcomes of ‘home’, ‘nursing facility’, ‘rehab’, and ‘death’, with 71% average c-statistic. The XGBoost model was also the best-performer in the binary outcome experiment with a c-statistic of 76%. This article also explores the accuracy, reliability, and interpretability of the best performing models in each experiment by identifying and analyzing the features that are most impactful to the predictions.

    Conclusions

    The acceptable accuracy and interpretability of the predictive models based on early admission data suggests that the models can be used in a suggestive context to help guide healthcare providers in efforts of planning effective and equitable discharge recommendations.

     
    more » « less
  4. Deep neural networks (DNNs) have started to find their role in the modern healthcare system. DNNs are being developed for diagnosis, prognosis, treatment planning, and outcome prediction for various diseases. With the increasing number of applications of DNNs in modern healthcare, their trustworthiness and reliability are becoming increasingly important. An essential aspect of trustworthiness is detecting the performance degradation and failure of deployed DNNs in medical settings. The softmax output values produced by DNNs are not a calibrated measure of model confidence. Softmax probability numbers are generally higher than the actual model confidence. The model confidence-accuracy gap further increases for wrong predictions and noisy inputs. We employ recently proposed Bayesian deep neural networks (BDNNs) to learn uncertainty in the model parameters. These models simultaneously output the predictions and a measure of confidence in the predictions. By testing these models under various noisy conditions, we show that the (learned) predictive confidence is well calibrated. We use these reliable confidence values for monitoring performance degradation and failure detection in DNNs. We propose two different failure detection methods. In the first method, we define a fixed threshold value based on the behavior of the predictive confidence with changing signal-to-noise ratio (SNR) of the test dataset. The second method learns the threshold value with a neural network. The proposed failure detection mechanisms seamlessly abstain from making decisions when the confidence of the BDNN is below the defined threshold and hold the decision for manual review. Resultantly, the accuracy of the models improves on the unseen test samples. We tested our proposed approach on three medical imaging datasets: PathMNIST, DermaMNIST, and OrganAMNIST, under different levels and types of noise. An increase in the noise of the test images increases the number of abstained samples. BDNNs are inherently robust and show more than 10% accuracy improvement with the proposed failure detection methods. The increased number of abstained samples or an abrupt increase in the predictive variance indicates model performance degradation or possible failure. Our work has the potential to improve the trustworthiness of DNNs and enhance user confidence in the model predictions. 
    more » « less
  5. Frasch, Martin G. (Ed.)
    With the wider availability of healthcare data such as Electronic Health Records (EHR), more and more data-driven based approaches have been proposed to improve the quality-of-care delivery. Predictive modeling, which aims at building computational models for predicting clinical risk, is a popular research topic in healthcare analytics. However, concerns about privacy of healthcare data may hinder the development of effective predictive models that are generalizable because this often requires rich diverse data from multiple clinical institutions. Recently, federated learning (FL) has demonstrated promise in addressing this concern. However, data heterogeneity from different local participating sites may affect prediction performance of federated models. Due to acute kidney injury (AKI) and sepsis’ high prevalence among patients admitted to intensive care units (ICU), the early prediction of these conditions based on AI is an important topic in critical care medicine. In this study, we take AKI and sepsis onset risk prediction in ICU as two examples to explore the impact of data heterogeneity in the FL framework as well as compare performances across frameworks. We built predictive models based on local, pooled, and FL frameworks using EHR data across multiple hospitals. The local framework only used data from each site itself. The pooled framework combined data from all sites. In the FL framework, each local site did not have access to other sites’ data. A model was updated locally, and its parameters were shared to a central aggregator, which was used to update the federated model’s parameters and then subsequently, shared with each site. We found models built within a FL framework outperformed local counterparts. Then, we analyzed variable importance discrepancies across sites and frameworks. Finally, we explored potential sources of the heterogeneity within the EHR data. The different distributions of demographic profiles, medication use, and site information contributed to data heterogeneity. 
    more » « less