skip to main content


Search for: All records

Award ID contains: 1910306

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Previous work using logistic regression suggests that cognitive control‐related frontoparietal activation in early psychosis can predict symptomatic improvement after 1 year of coordinated specialty care with 66% accuracy. Here, we evaluated the ability of six machine learning (ML) algorithms and deep learning (DL) to predict “Improver” status (>20% improvement on Brief Psychiatric Rating Scale [BPRS] total score at 1‐year follow‐up vs. baseline) and continuous change in BPRS score using the same functional magnetic resonance imaging‐based features (frontoparietal activations during the AX‐continuous performance task) in the same sample (individuals with either schizophrenia (n =65, 49M/16F, mean age 20.8 years) or Type I bipolar disorder (n= 17, 9M/8F, mean age 21.6 years)). 138 healthy controls were included as a reference group. “Shallow” ML methods included Naive Bayes, support vector machine, K Star, AdaBoost, J48 decision tree, and random forest. DL included an explainable artificial intelligence (XAI) procedure for understanding results. The best overall performances (70% accuracy for the binary outcome and root mean square error = 9.47 for the continuous outcome) were achieved using DL. XAI revealed left DLPFC activation was the strongest feature used to make binary classification decisions, with a classification activation threshold (adjusted beta = .017) intermediate to the healthy control mean (adjusted beta = .15, 95% CI = −0.02 to 0.31) and patient mean (adjusted beta = −.13, 95% CI = −0.37 to 0.11). Our results suggest DL is more powerful than shallow ML methods for predicting symptomatic improvement. The left DLPFC may be a functional target for future biomarker development as its activation was particularly important for predicting improvement.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. Deep learning (DL) is of great interest in psychiatry due its potential yet largely untapped ability to utilize multidimensional datasets (such as fMRI data) to predict clinical outcomes. Typical DL methods, however, have strong assumptions, such as large datasets and underlying model opaqueness, that are suitable for natural image prediction problems but not medical imaging. Here we describe three relatively novel DL approaches that may help accelerate its incorporation into mainstream psychiatry research and ultimately bring it into the clinic as a prognostic tool. We first introduce two methods that can reduce the amount of training data required to develop accurate models. These may prove invaluable for fMRI-based DL given the time and monetary expense required to acquire neuroimaging data. These methods are (1) transfer learning − the ability of deep learners to incorporate knowledge learned from one data source (e.g., fMRI data from one site) and apply it toward learning from a second data source (e.g., data from another site), and (2) data augmentation (via Mixup) − a self-supervised learning technique in which “virtual” instances are created. We then discuss explainable artificial intelligence (XAI), i.e., tools that reveal what features (and in what combinations) deep learners use to make decisions. XAI can be used to solve the “black box” criticism common in DL and reveal mechanisms that ultimately produce clinical outcomes. We expect these techniques to greatly enhance the applicability of DL in psychiatric research and help reveal novel mechanisms and potential pathways for therapeutic intervention in mental illness. 
    more » « less
  4. null (Ed.)
    Recent work on explainable clustering allows describing clusters when the features are interpretable. However, much modern machine learning focuses on complex data such as images, text, and graphs where deep learning is used but the raw features of data are not interpretable. This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags. We propose deep descriptive clustering that performs sub-symbolic representation learning on complex data while generating explanations based on symbolic data. We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives. We generate explanations by solving an integer linear programming that generates concise and orthogonal descriptions for each cluster. Finally, we allow the explanation to inform better clustering by proposing a novel pairwise loss with self-generated constraints to maximize the clustering and explanation module's consistency. Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance while offering high-quality cluster-level explanations. 
    more » « less
  5. null (Ed.)
    Building a predictive model based on historical Electronic Health Records (EHRs) for personalized healthcare has become an active research area. Benefiting from the powerful ability of feature ex- traction, deep learning (DL) approaches have achieved promising performance in many clinical prediction tasks. However, due to the lack of interpretability and trustworthiness, it is difficult to apply DL in real clinical cases of decision making. To address this, in this paper, we propose an interpretable and trustworthy predictive model (INPREM) for healthcare. Firstly, INPREM is designed as a linear model for interpretability while encoding non-linear rela- tionships into the learning weights for modeling the dependencies between and within each visit. This enables us to obtain the contri- bution matrix of the input variables, which is served as the evidence of the prediction result(s), and help physicians understand why the model gives such a prediction, thereby making the model more in- terpretable. Secondly, for trustworthiness, we place a random gate (which follows a Bernoulli distribution to turn on or off) over each weight of the model, as well as an additional branch to estimate data noises. With the help of the Monto Carlo sampling and an ob- jective function accounting for data noises, the model can capture the uncertainty of each prediction. The captured uncertainty, in turn, allows physicians to know how confident the model is, thus making the model more trustworthy. We empirically demonstrate that the proposed INPREM outperforms existing approaches with a significant margin. A case study is also presented to show how the contribution matrix and the captured uncertainty are used to assist physicians in making robust decisions. 
    more » « less
  6. null (Ed.)
    Building a predictive model based on historical Electronic Health Records (EHRs) for personalized healthcare has become an active research area. Benefiting from the powerful ability of feature ex- traction, deep learning (DL) approaches have achieved promising performance in many clinical prediction tasks. However, due to the lack of interpretability and trustworthiness, it is difficult to apply DL in real clinical cases of decision making. To address this, in this paper, we propose an interpretable and trustworthy predictive model (INPREM) for healthcare. Firstly, INPREM is designed as a linear model for interpretability while encoding non-linear rela- tionships into the learning weights for modeling the dependencies between and within each visit. This enables us to obtain the contri- bution matrix of the input variables, which is served as the evidence of the prediction result(s), and help physicians understand why the model gives such a prediction, thereby making the model more in- terpretable. Secondly, for trustworthiness, we place a random gate (which follows a Bernoulli distribution to turn on or off) over each weight of the model, as well as an additional branch to estimate data noises. With the help of the Monto Carlo sampling and an ob- jective function accounting for data noises, the model can capture the uncertainty of each prediction. The captured uncertainty, in turn, allows physicians to know how confident the model is, thus making the model more trustworthy. We empirically demonstrate that the proposed INPREM outperforms existing approaches with a significant margin. A case study is also presented to show how the contribution matrix and the captured uncertainty are used to assist physicians in making robust decisions. 
    more » « less
  7. Social networks and social media have played a key role for observing and influencing how the political landscape takes shape and dynamically shifts. It is especially true in events such as national elections as indicated by earlier studies with Facebook (Williams and Gulati, in: Proceedings of the annual meeting of the American Political Science Association, 2009) and Twitter (Larsson and Moe in New Med Soc 14(5):729–747, 2012). Not surprisingly in an attempt to better understand and simplify these networks, community discovery methods have been used, such as the Louvain method (Blondel et al. in J Stat Mechanics Theory Exp 2008(10):P10008, 2008) to understand elections (Gaumont et al. in PLoS ONE 13(9):e0201879, 2018). However, most community-based studies first simplify the complex Twitter data into a single network based on (for example) follower, retweet or friendship properties. This requires ignoring some information or combining many types of information into a graph, which can mask many insights. In this paper, we explore Twitter data as a time-stamped vertex- labeled graph. The graph structure can be given by a structural relation between the users such as retweet, friendship or fol- lower relation, whilst the behavior of the individual is given by their posting behavior which is modeled as a time-evolving vertex labels. We explore leveraging existing community discovery methods to find communities using just the structural data and then describe these communities using behavioral data. We explore two complimentary directions: (1) creating a taxonomy of hashtags based on their community usage and (2) efficiently describing the communities expanding our recently published work. We have created two datasets, one each for the French and US elections from which we compare and contrast insights on the usage of hashtags. 
    more » « less