skip to main content


Title: Wall-Shear-Stress-Based Conditional Sampling Analysis of Coherent Structures in a Turbulent Boundary Layer
Abstract Coherent structures are critical for controlling turbulent boundary layers due to their roles in momentum and heat transfer in the flow. Turbulent coherent structures can be detected by measuring wall shear stresses that are footprints of coherent structures. In this study, wall shear stress fluctuations were measured simultaneously in a zero pressure gradient turbulent boundary layer using two house-made wall shear stress probes aligned in the spanwise direction. The wall shear stress probe consisted of two hot-wires on the wall aligned in a V-shaped configuration for measuring streamwise and spanwise shear stresses, and their performance was validated in comparison with a direct numerical simulation result. Relationships between measured wall shear stress fluctuations and streamwise velocity fluctuations were analyzed using conditional sampling techniques. The peak detection method and the variable-interval time-averaging (VITA) method showed that quasi-streamwise vortices were inclined toward the streamwise direction. When events were simultaneously detected by the two probes, stronger fluctuations in streamwise velocity were detected, which suggests that stronger coherent structures were detected. In contrast to the former two methods, the hibernating event detection method detects events with lower wall shear stress fluctuations. The ensemble-averaged mean velocity profile of hibernating events was shifted upward compared to the law of the wall, which suggests low drag status of the coherent structures related with hibernating events. These methods suggest significant correlations between wall shear stress fluctuations and coherent structures, which could motivate flow control strategies to fully exploit these correlations.  more » « less
Award ID(s):
1832976
NSF-PAR ID:
10296805
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Fluids Engineering
Volume:
143
Issue:
4
ISSN:
0098-2202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aiming to study the rough-wall turbulent boundary layer structure over differently arranged roughness elements, an experimental study was conducted on flows with regular and random roughness. Varying planform densities of truncated cone roughness elements in a square staggered pattern were investigated. The same planform densities were also investigated in random arrangements. Velocity statistics were measured via two-component laser Doppler velocimetry and stereoscopic particle image velocimetry. Friction velocity, thickness, roughness length and zero-plane displacement, determined from spatially averaged flow statistics, showed only minor differences between the regular and random arrangements at the same density. Recent a priori morphometric and statistical drag prediction methods were evaluated against experimentally determined roughness length. Observed differences between regular and random surface flow parameters were due to the presence of secondary flows which manifest as high-momentum pathways and low-momentum pathways in the streamwise velocity. Contrary to expectation, these secondary flows were present over the random surfaces and not discernible over the regular surfaces. Previously identified streamwise-coherent spanwise roughness heterogeneity does not seem to be present, suggesting that such roughness heterogeneity is not necessary to sustain secondary flows. Evidence suggests that the observed secondary flows were initiated at the front edge of the roughness and sustained over irregular roughness. Due to the secondary flows, local turbulent boundary layer profiles do not scale with local wall shear stress but appear to scale with local turbulent shear stress above the roughness canopy. Additionally, quadrant analysis shows distinct changes in the populations of ejection and sweep events. 
    more » « less
  2. Abstract

    Aerodynamic surface stress imposed by the atmospheric surface layer (ASL) drives aeolian sediment transport processes. When the imposed stress exceeds fluid threshold, splashing sand grains release fine (aerosol) particles. This process stops when the imposed stress falls below an impact threshold. Turbulence in the ASL is composed of elongated streaks of relatively high and low streamwise momentum (high‐momentum and low‐momentum regions, HMR and LMR, respectively), and these streaks are aligned with the prevailing winds. Streamwise‐wall‐normal turbulent stress is the concurrent product of fluctuations in streamwise and vertical velocity. These production mechanisms are categorized into quadrants: sweeps, inner interactions, ejections, and outer interactions, where the first two and last two occur within HMRs and LMRs, respectively. Under typical ASL conditions, the time‐averaged shear velocity is bound between 0.3 and 0.5 m/s, demonstrating the importance of fluctuations in mobilizing sand grains via saltation: time‐averaged shear velocity exceeding threshold does not correspond with typical ASL conditions. Given the aforementioned contributions to streamwise‐wall‐normal turbulent stresses from sweeps and ejections, it is self‐evident that under typical conditions only sweeps possess the momentum required to exceed threshold. But, any dust released is trapped by downwelling from aloft; ejections rarely exceed threshold, but they contain the positive vertical velocity needed to entrain. These attributes represent an entrainment paradox. Complementary field data are used to demonstrate the existence of an entrainment paradox. Large eddy simulation has been used to capture space‐time evolution of an idealized ASL and identify mechanistic flow physics central to entrainment.

     
    more » « less
  3. This paper employs an input–output based approach to analyse the convective velocities and transport of fluctuations in turbulent channel flows. The convective velocity for a fluctuating quantity associated with streamwise–spanwise wavelength pairs at each wall-normal location is obtained through the maximization of the power spectral density associated with the linearized Navier–Stokes equations with a turbulent mean profile and delta-correlated Gaussian forcing. We first demonstrate that the mean convective velocities computed in this manner agree well with those reported previously in the literature. We then exploit the analytical framework to probe the underlying mechanisms contributing to the local convective velocity at different wall-normal locations by isolating the contributions of each streamwise–spanwise wavelength pair (flow scale). The resulting analysis suggests that the behaviour of the convective velocity in the near-wall region is influenced by large-scale structures further away from the wall. These structures resemble Townsend’s attached eddies in the cross-plane, yet show incomplete similarity in the streamwise direction. We then investigate the role of each linear term in the momentum equation to isolate the contribution of the pressure, mean shear, and viscous effects to the deviation of the convective velocity from the mean at each flow scale. Our analysis highlights the role of the viscous effects, particularly in regards to large channel spanning structures whose influence extends to the near-wall region. The results of this work suggest the promise of an input–output approach for analysing convective velocity across a range of flow scales using only the mean velocity profile. 
    more » « less
  4. A new Anechoic Wall Jet Wind Tunnel was built at Virginia Tech. A detailed design based on the old wall jet tunnel was done to improve the quality of the resultant flow. Aerodynamic and acoustic calibrations were performed in order to understand properties and characteristics of the flow generated by this new facility which can be used for various aeroacoustic studies. Far-field acoustics were measured using half-inch B&K microphones in a streamwise array to characterize and reduce the background noise. Sound pressure levels were lower by 10 dB for frequencies up to 700Hz in comparison to the old facility. The turbulent surface pressure fluctuations of the wall-jet flow were studied using Sennheiser microphones placed along streamwise and spanwise locations to record surface pressure fluctuations. Comparison of the autocorrelation plotted for microphones along the same span indicate uniform flow features. A decay in the turbulence levels is observed along the downstream direction as expected. Aerodynamic calibrations included mean velocity measurements along different spanwise locations, wall-jet boundary layer profiles and streamwise cross-sections. Spanwise and cross-sectional velocity profiles show good uniformity of the flow. Detailed boundary layer analyses were performed with the parameters obtained from the experiments. 
    more » « less
  5. The interplay between viscoelasticity and inertia in dilute polymer solutions at high deformation rates can result in inertioelastic instabilities. The nonlinear evolution of these instabilities generates a state of turbulence with significantly different spatiotemporal features compared to Newtonian turbulence, termed elastoinertial turbulence (EIT). We ex- plore EIT by studying the dynamics of a submerged planar jet of a dilute aqueous polymer solution injected into a quiescent tank of water using a combination of schlieren imaging and laser Doppler velocimetry (LDV). We show how fluid elasticity has a nonmonotonic effect on the jet stability depending on its magnitude, creating two distinct regimes in which elastic effects can either destabilize or stabilize the jet. In agreement with linear stability analyses of viscoelastic jets, an inertioelastic shear-layer instability emerges near the edge of the jet for small levels of elasticity, independent of bulk undulations in the fluid column. The growth of this disturbance mode destabilizes the flow, resulting in a turbulence transition at lower Reynolds numbers and closer to the nozzle compared to the conditions required for the transition to turbulence in a Newtonian jet. Increasing the fluid elasticity merges the shear-layer instability into a bulk instability of the jet column. In this regime, elastic tensile stresses generated in the shear layer act as an “elastic membrane” that partially stabilizes the flow, retarding the transition to turbulence to higher levels of inertia and greater distances from the nozzle. In the fully turbulent state far from the nozzle, planar viscoelastic jets exhibit unique spatiotemporal features associated with EIT. The time-averaged angle of jet spreading, an Eulerian measure of the degree of entrainment, and the centerline velocity of the jets both evolve self-similarly with distance from the nozzle. The autocovariance of the schlieren images in the fully turbulent region of the jets shows coherent structures that are elongated in the streamwise direction, consistent with the suppression of streamwise vortices by elastic stresses. These coherent structures give a higher spectral energy to small frequency modes in EIT characterized by LDV measurements of the velocity fluctuations at the jet centerline. Finally, our LDV measurements reveal a frequency spectrum characterized by a −3 power-law exponent, different from the well-known −5/3 power-law exponent characteristic of Newtonian turbulence. 
    more » « less