skip to main content


Title: Turbulent boundary layer flow over regularly and irregularly arranged truncated cone surfaces
Aiming to study the rough-wall turbulent boundary layer structure over differently arranged roughness elements, an experimental study was conducted on flows with regular and random roughness. Varying planform densities of truncated cone roughness elements in a square staggered pattern were investigated. The same planform densities were also investigated in random arrangements. Velocity statistics were measured via two-component laser Doppler velocimetry and stereoscopic particle image velocimetry. Friction velocity, thickness, roughness length and zero-plane displacement, determined from spatially averaged flow statistics, showed only minor differences between the regular and random arrangements at the same density. Recent a priori morphometric and statistical drag prediction methods were evaluated against experimentally determined roughness length. Observed differences between regular and random surface flow parameters were due to the presence of secondary flows which manifest as high-momentum pathways and low-momentum pathways in the streamwise velocity. Contrary to expectation, these secondary flows were present over the random surfaces and not discernible over the regular surfaces. Previously identified streamwise-coherent spanwise roughness heterogeneity does not seem to be present, suggesting that such roughness heterogeneity is not necessary to sustain secondary flows. Evidence suggests that the observed secondary flows were initiated at the front edge of the roughness and sustained over irregular roughness. Due to the secondary flows, local turbulent boundary layer profiles do not scale with local wall shear stress but appear to scale with local turbulent shear stress above the roughness canopy. Additionally, quadrant analysis shows distinct changes in the populations of ejection and sweep events.  more » « less
Award ID(s):
1738918
NSF-PAR ID:
10338058
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
933
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by the need for accurate determination of wall shear stress from profile measurements in turbulent boundary layer flows, the total shear stress balance is analysed and reformulated using several well-established semi-empirical relations. The analysis highlights the significant effect that small pressure gradients can have on parameters deduced from data even in nominally zero pressure gradient boundary layers. Using the comprehensive shear stress balance together with the log-law equation, it is shown that friction velocity, roughness length and zero-plane displacement can be determined with only velocity and turbulent shear stress profile measurements at a single streamwise location for nominally zero pressure gradient turbulent boundary layers. Application of the proposed analysis to turbulent smooth- and rough-wall experimental data shows that the friction velocity is determined with accuracy comparable to force balances (approximately 1 %–4 %). Additionally, application to boundary layer data from previous studies provides clear evidence that the often cited discrepancy between directly measured friction velocities (e.g. using force balances) and those derived from traditional total shear stress methods is likely due to the small favourable pressure gradient imposed by a fixed cross-section facility. The proposed comprehensive shear stress analysis can account for these small pressure gradients and allows more accurate boundary layer wall shear stress or friction velocity determination using commonly available mean velocity and shear stress profile data from a single streamwise location. 
    more » « less
  2. null (Ed.)
    Dimensional analysis suggests that the dissipation length scale ( $\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $u_{\star }$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $\ell _{{\it\epsilon}}$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here ${\it\epsilon}$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $r/\ell _{{\it\epsilon}}$ ), where $r$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $r/\ell _{{\it\epsilon}}$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $\ell _{{\it\epsilon}}$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $\ell _{{\it\epsilon}}$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales. 
    more » « less
  3. Abstract

    Accurately predicting bare‐soil evaporation requires the proper characterization of the near‐surface atmospheric conditions. These conditions, dependent on factors such as surface microtopography and wind velocity, vary greatly and therefore require high‐resolution datasets to be fully incorporated into evaporation models. These factors are oftentimes parameterized in models through the aerodynamic resistance (ra), in which the vapor roughness length (z0v) and the momentum roughness length (z0m) are two crucial parameters that describe the transport near the soil‐atmosphere interface. Typically, when evaluating bare‐soil evaporation, these two characteristic lengths are assumed equal, although differences are likely to occur especially in turbulent flows over undulating surfaces. Thus, this study aims to investigate the relationship betweenz0vandz0mabove undulating surfaces to ultimately improve accuracy in estimating evaporation rate. To achieve this goal, four uniquely designed wind tunnel—soil tank experiments were conducted considering different wind speeds and undulation spacings. Particle image velocimetry (PIV) was used to measure the velocity field above the undulating surface in high resolution. Using the high‐fidelity data set, the logarithmic ratio ofz0vtoz0mis determined and used to estimatera. Results confirm that these lengths differ significantly, with the logarithmic ratio roughly ranging from −15 to −5 under the conditions tested. PIV‐measured results demonstrate this ratio is closely tied to the mass and momentum transport behaviors influenced by surface undulations. Using the data‐integrated formulation ofra, predictions of evaporation rate were prepared for both the laboratory and lysimeter experiments, demonstrating the efficacy of the proposed approach in this study.

     
    more » « less
  4. null (Ed.)
    Abstract Coherent structures are critical for controlling turbulent boundary layers due to their roles in momentum and heat transfer in the flow. Turbulent coherent structures can be detected by measuring wall shear stresses that are footprints of coherent structures. In this study, wall shear stress fluctuations were measured simultaneously in a zero pressure gradient turbulent boundary layer using two house-made wall shear stress probes aligned in the spanwise direction. The wall shear stress probe consisted of two hot-wires on the wall aligned in a V-shaped configuration for measuring streamwise and spanwise shear stresses, and their performance was validated in comparison with a direct numerical simulation result. Relationships between measured wall shear stress fluctuations and streamwise velocity fluctuations were analyzed using conditional sampling techniques. The peak detection method and the variable-interval time-averaging (VITA) method showed that quasi-streamwise vortices were inclined toward the streamwise direction. When events were simultaneously detected by the two probes, stronger fluctuations in streamwise velocity were detected, which suggests that stronger coherent structures were detected. In contrast to the former two methods, the hibernating event detection method detects events with lower wall shear stress fluctuations. The ensemble-averaged mean velocity profile of hibernating events was shifted upward compared to the law of the wall, which suggests low drag status of the coherent structures related with hibernating events. These methods suggest significant correlations between wall shear stress fluctuations and coherent structures, which could motivate flow control strategies to fully exploit these correlations. 
    more » « less
  5. Direct Numerical Simulation (DNS) of turbulent spatially-developing boundary layers is performed over an isothermal flat plate at several flow regimes: incompressible, supersonic (Mach 2.5), and hypersonic (Mach 5). Similar low Reynolds numbers are considered in all cases with the purpose of assessing flow compressibility on low/high order flow statistics and on the dynamics of coherent structures of Zero Pressure Gradient (ZPG) flows. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to high-speed flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). The Mach number effect has been mainly identified as significant changes in peak values of the streamwise velocity fluctuations. The vertical transport of Reynolds shear stresses is slightly away from the wall in the near wall region for the hypersonic case. Zones of low speed fluid exhibits a much more elongated shape in incompressible flow as compared with the compressible counterpart. Furthermore, low speed streaks exhibit a contorted, twisted and stretched form in incompressible flow while they are shorter and more isotropic in the supersonic flow. 
    more » « less