Using the context of trajectory estimation and tracking for multirotor unmanned aerial vehicles (UAVs), we explore the challenges in applying high-gain observers to highly dynamic systems. The multirotor will operate in the presence of external disturbances and modeling errors. At the same time, the reference trajectory is unknown and generated from a reference system with unknown or partially known dynamics. We assume the only measurements that are available are the position and orientation of the multirotor and the position of the reference system. We adopt an extended high-gain observer (EHGO) estimation framework to estimate the unmeasured multirotor states, modeling errors, external disturbances, and the reference trajectory. We design a robust output feedback controller for trajectory tracking that comprises a feedback linearizing controller and the EHGO. The proposed control method is rigorously analyzed to establish its stability properties. Finally, we illustrate our theoretical results through numerical simulation and experimental validation in which a multirotor tracks a moving ground vehicle with an unknown trajectory and dynamics and successfully lands on the vehicle while in motion.
- Award ID(s):
- 1932529
- PAR ID:
- 10296816
- Date Published:
- Journal Name:
- IEEE International Workshop on Intelligent Robots and Systems
- Page Range / eLocation ID:
- 7661 to 7666
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
AIAA (Ed.)In this paper, a novel model reference adaptive control (MRAC) architecture for nonlinear, time-varying, hybrid dynamical systems is applied for the first time to design the control system of a multi-rotor unmanned aerial vehicle (UAV). The proposed control system is specifically designed to address problems of practical interests involving autonomous UAVs transporting unknown, unsteady payloads and subject to instantaneous variations both in their state and in their dynamics. These variations can be due, for instance, to the payload’s dynamics, impacts between the payload and its casing, and sudden payload dropping and pickup. The proposed hybrid MRAC architecture improves the UAV’s trajectory tracking performance over classical MRAC also in the presence of motor failures. The applicability of the proposed framework is validated numerically through the first use of the high-fidelity simulation environment PyChrono for autonomous UAV control system testing.more » « less
-
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for the future k time steps. We show that when the prediction window k is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of O(λkT), where λ<1 is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. We also show a variation of predictive control obtains the first competitive bound for the control of linear time-varying systems: 1+O(λk). Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.more » « less
-
Learning how to effectively control unknown dynamical systems from data is crucial for intelligent autonomous systems. This task becomes a significant challenge when the underlying dynamics are changing with time. Motivated by this challenge, this paper considers the problem of controlling an unknown Markov jump linear system (MJS) to optimize a quadratic objective in a data-driven way. By taking a model-based perspective, we consider identification-based adaptive control for MJS. We first provide a system identification algorithm for MJS to learn the dynamics in each mode as well as the Markov transition matrix, underlying the evolution of the mode switches, from a single trajectory of the system states, inputs, and modes. Through mixing-time arguments, sample complexity of this algorithm is shown to be O(1/T−−√). We then propose an adaptive control scheme that performs system identification together with certainty equivalent control to adapt the controllers in an episodic fashion. Combining our sample complexity results with recent perturbation results for certainty equivalent control, we prove that when the episode lengths are appropriately chosen, the proposed adaptive control scheme achieves O(T−−√) regret. Our proof strategy introduces innovations to handle Markovian jumps and a weaker notion of stability common in MJSs. Our analysis provides insights into system theoretic quantities that affect learning accuracy and control performance. Numerical simulations are presented to further reinforce these insights.more » « less
-
M. Grimble (Ed.)
Summary This paper presents the first model reference adaptive control system for nonlinear, time‐varying, hybrid dynamical plants affected by matched and parametric uncertainties, whose resetting events are unknown functions of time and the plant's state. In addition to a control law and an adaptive law, which resemble those of the classical model reference adaptive control framework for continuous‐time dynamical systems, the proposed framework allows imposing instantaneous variations in the reference model's trajectory to rapidly steer the trajectory tracking error to zero, while retaining the closed‐loop system's ability to follow a user‐defined signal. These results are enabled by the first extension of the classical LaSalle–Yoshizawa theorem to time‐varying hybrid dynamical systems, which is presented in this paper as well. A numerical simulation shows the key features of the proposed adaptive control system and highlights its ability to reduce both the control effort and the trajectory tracking error over a classical model reference adaptive control system applied to the same problem.