Rank aggregation from pairwise preferences has widespread applications in recommendation systems and information retrieval. Given the enormous economic and societal impact of these applications, and the consequent incentives for malicious players to manipulate ranking outcomes in their favor, an important challenge is to make rank aggregation algorithms robust to adversarial manipulations in data. In this paper, we initiate the study of robustness in rank aggregation under the popular Bradley-Terry-Luce (BTL) model for pairwise comparisons. We consider a setting where pairwise comparisons are initially generated according to a BTL model, but a fraction of these comparisons are corrupted by an adversary prior to being reported to us. We consider a strong contamination model, where an adversary having complete knowledge of the initial truthful data and the underlying true BTL parameters, can subsequently corrupt the truthful data by inserting, deleting, or changing data points. The goal is to estimate the true score/weight of each item under the BTL model, even in the presence of these corruptions. We characterize the extent of adversarial corruption under which the true BTL parameters are uniquely identifiable. We also provide a novel pruning algorithm that provably cleans the data of adversarial corruption under reasonable conditions on data generation and corruption. We corroborate our theory with experiments on both synthetic as well as real data showing that previous algorithms are vulnerable to even small amounts of corruption, whereas our algorithm can clean a reasonably high amount of corruption.
more »
« less
Learning Deep Neural Networks under Agnostic Corrupted Supervision
Training deep neural models in the presence of corrupted supervision is challenging as the corrupted data points may significantly impact the generalization performance. To alleviate this problem, we present an efficient robust algorithm that achieves strong guarantees without any assumption on the type of corruption and provides a unified framework for both classification and regression problems. Unlike many existing approaches that quantify the quality of the data points (e.g., based on their individual loss values), and filter them accordingly, the proposed algorithm focuses on controlling the collective impact of data points on the average gradient. Even when a corrupted data point failed to be excluded by our algorithm, the data point will have a very limited impact on the overall loss, as compared with state-of-the-art filtering methods based on loss values. Extensive experiments on multiple benchmark datasets have demonstrated the robustness of our algorithm under different types of corruption.
more »
« less
- Award ID(s):
- 1638679
- PAR ID:
- 10296849
- Date Published:
- Journal Name:
- Proceedings of the 38th International Conference on Machine Learning
- Volume:
- 139
- Page Range / eLocation ID:
- 6957-6967
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the robustness of ridge regression, lasso regression, and of a neural network, when the training set has been randomly corrupted and in response to this corruption the training-size is reduced in order to remove the corrupted data. While the neural network appears to be the most robust method among these three, nevertheless lasso regression appears to be the method of choice since it suffers less loss both when the full information is available to the learner, as well as when a significant amount of the original training set has been rendered useless because of random data corruption.more » « less
-
Ranzato, M.; Beygelzimer, A.; Liang, P.S.; Vaughan, J.W.; Dauphin, Y. (Ed.)Fairness and robustness are critical elements of Trustworthy AI that need to be addressed together. Fairness is about learning an unbiased model while robustness is about learning from corrupted data, and it is known that addressing only one of them may have an adverse affect on the other. In this work, we propose a sample selection-based algorithm for fair and robust training. To this end, we formulate a combinatorial optimization problem for the unbiased selection of samples in the presence of data corruption. Observing that solving this optimization problem is strongly NP-hard, we propose a greedy algorithm that is efficient and effective in practice. Experiments show that our method obtains fairness and robustness that are better than or comparable to the state-of-the-art technique, both on synthetic and benchmark real datasets. Moreover, unlike other fair and robust training baselines, our algorithm can be used by only modifying the sampling step in batch selection without changing the training algorithm or leveraging additional clean data.more » « less
-
Event detection is gaining increasing attention in smart cities research. Large-scale mobility data serves as an important tool to uncover the dynamics of urban transportation systems, and more often than not the dataset is incomplete. In this article, we develop a method to detect extreme events in large traffic datasets, and to impute missing data during regular conditions. Specifically, we propose a robust tensor recovery problem to recover low-rank tensors under fiber-sparse corruptions with partial observations, and use it to identify events, and impute missing data under typical conditions. Our approach is scalable to large urban areas, taking full advantage of the spatio-temporal correlations in traffic patterns. We develop an efficient algorithm to solve the tensor recovery problem based on the alternating direction method of multipliers (ADMM) framework. Compared with existing l 1 norm regularized tensor decomposition methods, our algorithm can exactly recover the values of uncorrupted fibers of a low-rank tensor and find the positions of corrupted fibers under mild conditions. Numerical experiments illustrate that our algorithm can achieve exact recovery and outlier detection even with missing data rates as high as 40% under 5% gross corruption, depending on the tensor size and the Tucker rank of the low rank tensor. Finally, we apply our method on a real traffic dataset corresponding to downtown Nashville, TN and successfully detect the events like severe car crashes, construction lane closures, and other large events that cause significant traffic disruptions.more » « less
-
Most commonly used classification algorithms process data in the form of vectors. At the same time, modern datasets often comprise multimodal measurements that are naturally modeled as multi-way arrays, also known as tensors. Processing multi-way data in their tensor form can enable enhanced inference and classification accuracy. Tucker decomposition is a standard method for tensor data processing, which however has demonstrated severe sensitivity to corrupted measurements due to its L2-norm formulation. In this work, we present a selection of classification methods that employ an L1-norm-based, corruption-resistant reformulation of Tucker (L1-Tucker). Our experimental studies on multiple real datasets corroborate the corruption-resistance and classification accuracy afforded by L1-Tucker.more » « less
An official website of the United States government

