skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal sizing of renewable microgrid for flow shop systems under island operations
This paper addresses a critical question pertaining to manufacturing sustainability: is it economically viable to implement an island microgrid to power a flow shop system under power demand and supply uncertainty? Though many studies on microgrid sizing are available, the majority assume the microgrid is interconnected with main grid. This paper aims to size wind turbine, photovoltaic and battery storage to energize a multi-stage flow shop system in island mode. A mixed-integer, non-linear programming model is formulated to optimize the renewable portfolio and capacity with the goal of minimizing the levelized cost of energy. The island microgrid is tested in three locations with diverse climate profiles. The results show that net zero energy flow shop production is economically feasible in the areas where the average wind speed exceed 8 m/s at 80-meter tower height, or the battery cost drops below $100,000/MWh. Sensitivity analyses are further carried out with respect to installation cost, demand response program, production scalability, and weather seasonality.  more » « less
Award ID(s):
1704933
PAR ID:
10296909
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Procedia manufacturing
Volume:
51
ISSN:
2351-9789
Page Range / eLocation ID:
1779-1784
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A variety of methods have been proposed to assist the integration of microgrid in flow shop systems with the goal of attaining eco-friendly operations. There is still a lack of integrated planning models in which renewable portfolio, microgrid capacity and production plan are jointly optimized under power demand and generation uncertainty. This paper aims to develop a two-stage, mixed-integer programming model to minimize the levelized cost of energy of a flow shop powered by onsite renewables. The first stage minimizes the annual energy use subject to a job throughput requirement. The second stage aims at sizing wind turbine, solar panels and battery units to meet the hourly electricity needs during a year. Climate analytics are employed to characterize the stochastic wind and solar capacity factor on an hourly basis. The model is tested in four locations with a wide range of climate conditions. Three managerial insights are derived from the numerical experiments. First, time-of-use tariff significantly stimulates the wind penetration in locations with medium or low wind speed. Second, regardless of the climate conditions, large-scale battery storage units are preferred under time-of-use rate but it is not the case under a net metering policy. Third, wind- and solar-based microgrid is scalable and capable of meeting short-term demand variation and long-term load growth with a stable energy cost rate. 
    more » « less
  2. Ghate, A.; Krishnaiyer, K.; Paynabar, K. (Ed.)
    This study presents a two-stage stochastic aggregate production planning model to determine the optimal renewable generation capacity, production plan, workforce levels, and machine hours that minimize a production system’s operational cost. The model considers various uncertainties, including demand for final products, machine and labor hours available, and renewable power supply. The goal is to evaluate the feasibility of decarbonizing the manufacturing, transportation, and warehousing operations by adopting onsite wind turbines and solar photovoltaics coupled with battery systems assuming the facilities are energy prosumers. First-stage decisions are the siting and sizing of wind and solar generation, battery capacity, production quantities, hours of labor to keep, hire, or layoff, and regular, overtime, and idle machine hours to allocate over the planning horizon. Second-stage recourse actions include storing products in inventory, subcontracting or backorder, purchasing or selling energy to the main grid, and daily charging or discharging energy in the batteries in response to variable generation. Climate analytics performed in San Francisco and Phoenix permit to derive capacity factors for the renewable energy technologies and test their implementation feasibility. Numerical experiments are presented for three instances: island microgrid without batteries, island microgrid with batteries, and grid-tied microgrid for energy prosumer. Results show favorable levelized costs of energy that are equal to USD48.37/MWh, USD64.91/MWh, and USD36.40/MWh, respectively. The model is relevant to manufacturing companies because it can accelerate the transition towards eco-friendly operations through distributed generation. 
    more » « less
  3. Energy storage is increasingly important for a diversity of applications. Batteries can be used to store solar or wind energy providing power when the Sun is not shining or wind speed is insufficient to meet power demands. For large scale energy storage, solutions that are both economically and environmentally friendly are limited. Flow batteries are a type of battery technology which is not as well-known as the types of batteries used for consumer electronics, but they provide potential opportunities for large scale energy storage. These batteries have electrochemical recharging capabilities without emissions as is the case for other rechargeable battery technologies; however, with flow batteries, the power and energy are decoupled which is more similar to the operation of fuel cells. This decoupling provides the flexibility of independently designing the power output unit and energy storage unit, which can provide cost and time advantages and simplify future upgrades to the battery systems. One major challenge of the existing commercial flow battery technologies is their limited energy density due to the solubility limits of the electroactive species. Improvements to the energy density of flow batteries would reduce their installed footprint, transportation costs, and installation costs and may open up new applications. This review will discuss the background, current progress, and future directions of one unique class of flow batteries that attempt to improve on the energy density of flow batteries by switching to solid electroactive materials, rather than dissolved redox compounds, to provide the electrochemical energy storage. 
    more » « less
  4. In this paper, a microgrid scenario composed by a PV generator, a battery system and residential loads in a power Hardware-in-the-Loop (HIL) platform is developed and tested. The electrical structure of the system, the component software modelling and hardware implementation are described. This paper proposes an EMS for microgrid power balance and execution of Time of Use (TOU) and load shedding Demand Response (DR) functions. Experimental results of each component of the scenario are shown. 
    more » « less
  5. null (Ed.)
    Renewable energy sources such as solar and wind provide an effective solution for reducing dependency on conventional power generation and increasing the reliability and quality of power systems. Presented in this paper are design and implementation of a laboratory scale solar microgrid cyber-physical system (CPS) with wireless data monitoring as a teaching tool in the engineering technology curriculum. In the system, the solar panel, battery, charge controller, and loads form the physical layer, while the sensors, communication networks, supervisory control and data acquisition systems (SCADA) and control systems form the cyber layer. The physical layer was seamlessly integrated with the cyber layer consisting of control and communication. The objective was to create a robust CPS platform and to use the system to promote interest in and knowledge of renewable energy among university students. Experimental results showed that the maximum power point tracking (MPPT) charge controller provided the loads with power from the solar panel and used additional power to charge the rechargeable battery. Through the system, students learned and mastered key concepts and knowledge of multi-disciplinary areas including data sampling and acquisition, analog to digital conversion, solar power, battery charging, control, embedded systems and software programing. It is a valuable teaching resource for students to study renewable energy in CPS. 
    more » « less