skip to main content


Title: Design of a Laboratory Scale Solar Microgrid Cyber-Physical System for Education
Renewable energy sources such as solar and wind provide an effective solution for reducing dependency on conventional power generation and increasing the reliability and quality of power systems. Presented in this paper are design and implementation of a laboratory scale solar microgrid cyber-physical system (CPS) with wireless data monitoring as a teaching tool in the engineering technology curriculum. In the system, the solar panel, battery, charge controller, and loads form the physical layer, while the sensors, communication networks, supervisory control and data acquisition systems (SCADA) and control systems form the cyber layer. The physical layer was seamlessly integrated with the cyber layer consisting of control and communication. The objective was to create a robust CPS platform and to use the system to promote interest in and knowledge of renewable energy among university students. Experimental results showed that the maximum power point tracking (MPPT) charge controller provided the loads with power from the solar panel and used additional power to charge the rechargeable battery. Through the system, students learned and mastered key concepts and knowledge of multi-disciplinary areas including data sampling and acquisition, analog to digital conversion, solar power, battery charging, control, embedded systems and software programing. It is a valuable teaching resource for students to study renewable energy in CPS.  more » « less
Award ID(s):
1712146
NSF-PAR ID:
10272351
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Electronics
Volume:
10
Issue:
13
ISSN:
2079-9292
Page Range / eLocation ID:
1562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less
  2. Abstract

    Photovoltaic power‐conversion systems can harvest energy from sunlight almost perpetually whenever sunrays are accessible. Meanwhile, as indispensable energy storage units used in advanced technologies such as portable electronics, electric vehicles, and renewable/smart grids, batteries are energy‐limited closed systems and require constant recharging. Fusing these two essential technologies into a single device would create a sustainable power source. Here, it is demonstrated that such an integrated device can be realized by fusing a rear‐illuminated single‐junction perovskite solar cell with Li4Ti5O12‐LiCoO2Li‐ion batteries, whose photocharging is enabled by an electronic converter via voltage matching. This design facilitates a straightforward monolithic stacking of the battery on the solar cell using a common metal substrate, which provides a robust mechanical isolation between the two systems while simultaneously providing an efficient electrical interconnection. This system delivers a high overall photoelectric conversion‐storage efficiency of 7.3%, outperforming previous efforts on stackable integrated architectures with organic–inorganic photovoltaics. Furthermore, converter electronics facilitates system control with battery management and maximum power point tracking, which are inevitable for efficient, safe, and reliable operation of practical loads. This work presents a significant advancement toward integrated photorechargeable energy storage systems as next‐generation power sources.

     
    more » « less
  3. null (Ed.)
    Cyber-Physical Systems (CPS) connected in the form of Internet of Things (IoT) are vulnerable to various security threats, due to the infrastructure-less deployment of IoT devices. Device-to-Device (D2D) authentication of these networks ensures the integrity, authenticity, and confidentiality of information in the deployed area. The literature suggests different approaches to address security issues in CPS technologies. However, they are mostly based on centralized techniques or specific system deployments with higher cost of computation and communication. It is therefore necessary to develop an effective scheme that can resolve the security problems in CPS technologies of IoT devices. In this paper, a lightweight Hash-MAC-DSDV (Hash Media Access Control Destination Sequence Distance Vector) routing scheme is proposed to resolve authentication issues in CPS technologies, connected in the form of IoT networks. For this purpose, a CPS of IoT devices (multi-WSNs) is developed from the local-chain and public chain, respectively. The proposed scheme ensures D2D authentication by the Hash-MAC-DSDV mutual scheme, where the MAC addresses of individual devices are registered in the first phase and advertised in the network in the second phase. The proposed scheme allows legitimate devices to modify their routing table and unicast the one-way hash authentication mechanism to transfer their captured data from source towards the destination. Our evaluation results demonstrate that Hash-MAC-DSDV outweighs the existing schemes in terms of attack detection, energy consumption and communication metrics. 
    more » « less
  4. Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems. 
    more » « less
  5. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less