skip to main content


Title: Semi-automated counting of complex varves through image autocorrelation
Annual resolution sediment layers, known as varves, can provide continuous and high-resolution chronologies of sedimentary sequences. In addition, varve counting is not burdened with the high laboratory costs of geochronological analyses. Despite a more than 100-year history of use, many existing varve counting techniques are time consuming and difficult to reproduce. We present countMYvarves, a varve counting toolbox which uses sliding-window autocorrelation to count the number of repeated patterns in core scans or outcrop photos. The toolbox is used to build an annually-resolved record of sedimentation rates, which are depth-integrated to provide ages. We validate the model with repeated manual counts of a high sedimentation rate lake with biogenic varves (Herd Lake, USA) and a low sedimentation rate glacial lake (Lago Argentino, Argentina). In both cases, countMYvarves is consistent with manual counts and provides additional sedimentation rate data. The toolbox performs multiple simultaneous varve counts, enabling uncertainty to be quantified and propagated into the resulting age-depth model. The toolbox also includes modules to automatically exclude non-varved portions of sediment and interpolate over missing or disrupted sediment. CountMYvarves is open source, runs through a graphical user interface, and is available online for download for use on Windows, macOS or Linux at https://doi.org/10.5281/zenodo.4031811 .  more » « less
Award ID(s):
1714614
NSF-PAR ID:
10296953
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Quaternary Research
ISSN:
0033-5894
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Annually laminated lake sediment can track paleoenvironmental change at high resolution where alternative archives are often not available. However,information about the chronology is often affected by indistinct and intermittent laminations. Traditional chronology building struggles with thesekinds of laminations, typically failing to adequately estimate uncertainty or discarding the information recorded in the laminations entirely,despite their potential to improve chronologies. We present an approach that overcomes the challenge of indistinct or intermediate laminations andother obstacles by using a quantitative lamination quality index combined with a multi-core, multi-observer Bayesian lamination sedimentation modelthat quantifies realistic under- and over-counting uncertainties while integrating information from radiometric measurements (210Pb,137Cs, and 14C) into the chronology. We demonstrate this approach on sediment of indistinct and intermittently laminatedsequences from alpine Columbine Lake, Colorado. The integrated model indicates 3137 (95 % highest probability density range: 2753–3375) varveyears with a cumulative posterior distribution of counting uncertainties of −13 % to +7 %, indicative of systematic observerunder-counting. Our novel approach provides a realistic constraint on sedimentation rates and quantifies uncertainty in the varve chronology byquantifying over- and under-counting uncertainties related to observer bias as well as the quality and variability of the sediment appearance. The approachpermits the construction of a chronology and sedimentation rates for sites with intermittent or indistinct laminations, which are likely moreprevalent than sequences with distinct laminations, especially when considering non-lacustrine sequences, and thus expands the possibilities ofreconstructing past environmental change with high resolution.

     
    more » « less
  2. Abstract

    Relative sea‐level rise in the coming century will increase the risk of flooding and shoreline retreat on most major river deltas. River deltas can counteract flooding and shoreline retreat by depositing sediment on their surface. Yet, it is unclear what processes influence sedimentation and its variability on deltaic surfaces. Towards this end, we conducted a numerical modeling study in Delft3D to understand how floods, tides, and vegetation affect sedimentation rates and their spatial variability on islands in a deltaic system. Our experiments use a fully calibrated and validated hydrodynamic model of Wax Lake Delta, LA, USA. We analyzed eight numerical experiments that include a control simulation with no floods, tides, or vegetation, and seven simulations where we add in floods, tides, and vegetation. Our results clearly show that floods and tides have opposing effects. Compared to the control, floods introduce more sediment and increase the mean sedimentation rate, whereas, tides spread sediment over a larger area and decrease the mean sedimentation rate. Vegetation has a negligible effect on mean sedimentation rates but does shift sedimentation closer to the shoreline and to higher elevations. Overall, the amount of sedimentation on an island depends on its hydrological connectivity with the surrounding distributary channels. These results show that hydrologically well‐connected deltaic islands subject to tidal and riverine flooding aggrade their surfaces more evenly, which may be ideal for preventing inundation from relative sea‐level rise.

     
    more » « less
  3. Abstract

    Proglacial lakes, whose numbers have been growing around the world, may drive accelerated glacier retreat and provide valuable records of past glacier and climatic changes. Despite their importance, few studies have investigated the sedimentary properties and processes acting within large proglacial lakes. Lago Argentino (LArg) is a 1,500 km2ice‐contact lake on the eastern flank of the Southern Patagonian Icefield. Here, we describe the results from a detailed analysis of 47 sediment cores obtained throughout this lake basin, supplemented with remotely sensed data. We show that: (a) LArg exhibits a seasonal variation in sediment properties (varves); (b) varve formation results from three distinct processes, driven by seasonal changes in glacial sediment input, seasonal changes in fluvial sediment input, and seasonal variations in lake mixing; and (c) distance from glacier calving fronts provides the first‐order control on sediment grain size and accumulation rate. Our findings highlight the exceptional preservation of annual laminations within proglacial lakes, their potential for reconstructing past glacier changes, and their relevance for forecasting future glacier–lake interactions.

     
    more » « less
  4. Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States. 
    more » « less
  5. Abstract

    Lake‐based studies can provide seasonal‐ to millennial‐scale records of sediment yield to improve our understanding of catchment‐scale sediment transfer and complement shorter fluvial‐based sediment transport studies. In this study, sediment accumulation rates at 40 coring locations in Lake Peters, Brooks Range, Alaska, over ca. 42 years, calculated using fallout radionuclides and sediment density patterns, were spatially modelled based on distance from the primary inflow and lake water depth. We estimated mean interdecadal specific sediment yield (Mg km−2 year−1) using the spatially modelled sediment accumulation rates and compared that result to fluvial‐based sediment delivery for 2015–2016 open‐channel seasons, as well as to yields reported for other Arctic catchments. Using the lake‐based method, mean yield to Lake Peters between ca. 1973 and 2015 was 52 ± 12 Mg km−2 year−1, which is comparable with fluvial‐based modelling results of 33 (20–60) Mg km−2 year−1in 2015 and 79 (50–140) Mg km−2 year−1in 2016 (95% confidence intervals), respectively. Although 2016 was a year of above average sedimentation, the last extreme depositional event probably occurred between ca. 1970 and 1976 when a basal layer of fine sand was deposited in a broadly distributed, relatively thick and coarse bed, which we used for lake‐wide correlation. The dual lacustrine–fluvial method approach permits study of within‐lake and catchment‐scale processes. Within Lake Peters, sedimentation patterns show decreasing fluxes down‐lake, sediment bypassing near the primary inflow, the influence of secondary inflows and littoral redistribution, and a focusing effect in the deep proximal basin. At the watershed scale, sediment yield is largely driven by intense summer rainfall and strong seasonal hydroclimatic variability. This research informs paleo‐environmental reconstruction and environmental system modelling in Arctic lake catchments.

     
    more » « less