skip to main content

Title: Prediction of lake depth across a 17-state region in the United States
Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE more » = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1065786
Publication Date:
NSF-PAR ID:
10025551
Journal Name:
Inland waters
Volume:
6
Page Range or eLocation-ID:
314-324
ISSN:
2044-2041
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Pleistocene sand sea on the Arctic Coastal Plain (ACP) ofnorthern Alaska is underlain by an ancient sand dune field, a geologicalfeature that affects regional lake characteristics. Many of these lakes,which cover approximately 20 % of the Pleistocene sand sea, are relativelydeep (up to 25 m). In addition to the natural importance of ACP sand sealakes for water storage, energy balance, and ecological habitat, the needfor winter water for industrial development and exploration activities makeslakes in this region a valuable resource. However, ACP sand sea lakes havereceived little prior study. Here, we collect in situ bathymetric data totest 12 model variants for predicting sand sea lake depth based on analysisof Landsat-8 Operational Land Imager (OLI) images. Lake depth gradients weremeasured at 17 lakes in midsummer 2017 using a Humminbird 798ci HD SI Comboautomatic sonar system. The field-measured data points were compared tored–green–blue (RGB) bands of a Landsat-8 OLI image acquired on 8 August2016 to select and calibrate the most accurate spectral-depth model for eachstudy lake and map bathymetry. Exponential functions using a simple bandratio (with bands selected based on lake turbidity and bed substrate)yielded the most successful model variants. For each lake, the most accuratemodel explained 81.8 % of the variation inmore »depth, on average. Modeled lakebathymetries were integrated with remotely sensed lake surface area toquantify lake water storage volumes, which ranged from 1.056×10-3 to 57.416×10-3 km3. Due to variations in depthmaxima, substrate, and turbidity between lakes, a regional model iscurrently infeasible, rendering necessary the acquisition of additional insitu data with which to develop a regional model solution. Estimating lakewater volumes using remote sensing will facilitate better management ofexpanding development activities and serve as a baseline by which toevaluate future responses to ongoing and rapid climate change in the Arctic.All sonar depth data and modeled lake bathymetry rasters can be freelyaccessed at https://doi.org/10.18739/A2SN01440 (Simpson and Arp, 2018) andhttps://doi.org/10.18739/A2HT2GC6G (Simpson, 2019), respectively.« less
  2. Abstract
    Assessment of lakes for their future potential to drain relied on the 2002/03 airborne Interferometric Synthetic Aperture Radar (IFSAR) Digital Surface Model (DSM) data for the western Arctic Coastal Plain in northern Alaska. Lakes were extracted from the IfSAR DSM using a slope derivative and manual correction (Jones et al., 2017). The vertical uncertainty for correctly detecting lake-based drainage gradients with the IfSAR DSM was defined by comparing surface elevation differences of several overlapping DSM tile edges. This comparison showed standard deviations of elevation between overlapping IfSAR tiles ranging from 0.0 to 0.6 meters (m). Thus, we chose a minimum height difference of 0.6 m to represent a detectable elevation gradient adjacent to a lake as being most likely to contribute to a rapid drainage event. This value is also in agreement with field verified estimates of the relative vertical accuracy (~0.5 m) of the DSM dataset around Utqiaġvik (formerly Barrow) (Manley et al., 2005) and the stated vertical RMSE (~1.0 m) of the DSM data (Intermap, 2010). Development of the potential lake drainage dataset involved several processing steps. First, lakes were classified as potential future drainage candidates if the difference between the elevation of the lake surface andMore>>
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. The presence and thickness of snow overlying lake ice affects both the timing of melt and ice-free conditions, can contribute to overall ice thickness through its insulative capacity, and fosters the development of variable ice types. The use of UAVs to retrieve snow depths with high spatial resolution is necessary for the next generation of ultra-fine hydrological models, as the direct contribution of water from snow on lake ice is unknown. Such information is critical to the understanding of the physical processes of snow redistribution and capture in catchments on small lakes in the Arctic, which has been historically estimated from its relationship to terrestrial snowpack properties. In this study, we use a quad-copter UAV and SfM principles to retrieve and map snow depth at the winter maximum at high resolution over a the freshwater West Twin Lake on the Arctic Coastal Plain of northern Alaska. The accuracy of the snow depth retrievals is assessed using in-situ observations ( n = 1,044), applying corrections to account for the freeboard of floating ice. The average snow depth from in-situ observations was used calculate a correction factor based on the freeboard of the ice to retrieve snow depth from UAV acquisitions (RMSEmore »= 0.06 and 0.07 m for two transects on the lake. The retrieved snow depth map exhibits drift structures that have height deviations with a root mean square (RMS) of 0.08 m (correlation length = 13.8 m) for a transect on the west side of the lake, and an RMS of 0.07 m (correlation length = 18.7 m) on the east. Snow drifts present on the lake also correspond to previous investigations regarding the variability of snow on lakes, with a periodicity (separation) of 20 and 16 m for the west and east side of the lake, respectively. This study represents the first retrieval of snow depth on a frozen lake surface from a UAV using photogrammetry, and promotes the potential for high-resolution snow depth retrieval on small ponds and lakes that comprise a significant portion of landcover in Arctic environments.« less
  5. Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers areexpected to increase in response to warming and associated permafrost thaw.However, the lack of appropriate land cover datasets for scalingfield-measured methane emissions to circumpolar scales has contributed to alarge uncertainty for our understanding of present-day and future methaneemissions. Here we present the Boreal–Arctic Wetland and Lake Dataset(BAWLD), a land cover dataset based on an expert assessment, extrapolatedusing random forest modelling from available spatial datasets of climate,topography, soils, permafrost conditions, vegetation, wetlands, and surfacewater extents and dynamics. In BAWLD, we estimate the fractional coverage offive wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes(17 % of the global land surface). Land cover classes were defined usingcriteria that ensured distinct methane emissions among classes, as indicatedby a co-developed comprehensive dataset of methane flux observations. InBAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain)with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetlandclasses, covering ∼ 28 % each of the total wetland area,while the highest-methane-emitting marsh and tundra wetland classes occupied5 % and 12 %, respectively. Lakes, defined to include all lentic open-waterecosystems regardless of size, covered 1.4 × 106 km2(6 % of domain).more »Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lakearea, while high-emitting peatland and yedoma lakes covered 18 % and 4 %,respectively. Small (<0.1 km2) glacial, peatland, and yedomalakes combined covered 17 % of the total lake area but contributeddisproportionally to the overall spatial uncertainty in lake area with a95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12  × 106 km2 (0.5 % of domain), of which 8 % was associated withhigh-methane-emitting headwaters that drain organic-rich landscapes.Distinct combinations of spatially co-occurring wetland and lake classeswere identified across the BAWLD domain, allowing for the mapping of“wetscapes” that have characteristic methane emission magnitudes andsensitivities to climate change at regional scales. With BAWLD, we provide adataset which avoids double-accounting of wetland, lake, and river extentsand which includes confidence intervals for each land cover class. As such,BAWLD will be suitable for many hydrological and biogeochemical modellingand upscaling efforts for the northern boreal and arctic region, inparticular those aimed at improving assessments of current and futuremethane emissions. Data are freely available athttps://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021).« less