skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Distributed crustal shortening followed by transpressional shearing in the Superior Province, northeastern Canada: A Late Archean analogy to modern accretionary plate margins?
The Canadian Superior Province has become one of the key test pieces to discuss tectonic processes and mechanisms of crustal growth in the Late Archean. The Province consists of a >2.8 Ga proto-cratonic core intruded by voluminous arc-like plutons and surrounded by a series of narrow, elongate ca. 2.8–2.7 Ga juvenile belts, also referred to as terranes or domains. The terranes seem to wrap around the proto-cratonic core and generally young outward, but the kinematics and geodynamic causes of their assembly remain debated. In this paper, we examine the Radisson pluton in northeastern Qu´ebec, which intruded the southern, outer edge of the presumed magmatic arc (Bienville domain) along its ~WNW–ESE-trending tectonic boundary with the protocratonic crust (La Grande domain). The pluton, dominated by porphyritic monzogranite to quartz monzonite, was emplaced at around 2712 Ma and exhibits complex internal structure resulting from superposed magmatic to solid-state deformations. An early margin-parallel ~WNW–ESE magmatic foliation containing a steep lineation, recognized by the anisotropy of magnetic susceptibility (AMS), is interpreted as recording vertical stretching and horizontal flattening of highly crystallized magma, either due to emplacement and/or pure shear dominated transpression. More widespread, however, is a horizontal lineation within the same foliation that is interpreted as recording post-emplacement, but still syn-magmatic, tectonic strain (~NNE–SSW shortening and boundaryparallel stretching). Upon cooling, localized dextral S–C mylonite zones accommodated further shortening within the pluton whereas undeformed late-stage felsic dikes cross-cut the solid-state fabric at an angle to the pluton margins. We suggest that this structural succession, also reproduced by numerical fabric modeling, is a local-scale signal of a two-stage assembly of the northeastern Superior Province: the frontal, NNE-directed terrane convergence and attachment to the cratonic nucleus, operating in a ‘hot’ regime with voluminous arclike plutonism, was followed by more localized dextral shearing parallel to terrane boundaries. The latter phase is recorded at the proto-craton margin but also in the outboard Abitibi greenstone belt virtually at the same time (ca. 2700–2690 Ma). In combination, the two-stage evolution and similar deformation distributed over a broad region resemble modern large hot orogens formed in a plate-tectonic regime.  more » « less
Award ID(s):
1918357
NSF-PAR ID:
10296956
Author(s) / Creator(s):
Date Published:
Journal Name:
Precambrian research
ISSN:
0301-9268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precambrian rocks in the Black Hills record multiple tectonic processes, including suturing of the Wyoming and Superior cratons from ca. 1.740-1.715 Ga. To date, studies focused on this suturing event have primarily focused on prograde metamorphism and structures that record shortening between the cratonic blocks. However, a strike-slip shear zone subparallel to the shortening structures, named the Dakota Tectonic Zone (DTZ), has also been documented but is poorly understood. We examined intracrystalline deformation and associated microstructures in oriented thin sections of the Little Elk Granite (2.560 Ga mylonitized augen gneiss) within the mapped domain of the DTZ to further document how the strike-slip deformation fits into the Precambrian structural evolution of the Black Hills. At the outcrop scale, the Little Elk Granite contains two types of fabrics. Fabric type 1 is an augen gneiss fabric characterized by alignment of ~1-5 cm K-feldspar crystals that is interpreted to have formed during emplacement of the Little Elk Granite. Fabric type 2 cross-cuts the augen gneiss fabric and is characterized by comminution of the large K-feldspar grains within mylonitic shear zones. Whereas the type 1 fabric is folded throughout the field area, the type 2 shear fabric is consistently oriented at ~150/70°SW and contains a down-dip stretching lineation. Oriented thin sections cut perpendicular to foliation and parallel to lineation contain broken feldspar crystals that in some cases also exhibit undulose extinction. Domains between paired fragments of broken feldspar crystals are filled in with equant polycrystalline quartz aggregates and are regularly oriented at a high angle (>45°) to the shear foliation. Quartz-rich domains in the type 2 fabric generally display undulose extinction and dynamic recrystallization textures. Kinematic indicators from asymmetric strain shadows associated with feldspar porphyroclasts and asymmetrically folded micas yield dominantly top-to-the-left sense of motion, but top-to-the-right shear sense is also common (46%). The sum of microstructural data from the Little Elk Granite suggests that the DTZ is an upper greenschist facies (~300-450°C) left-lateral pure shear dominated transpression zone that likely formed late in the suturing of the Wyoming and Superior cratons. 
    more » « less
  2. Magmatism in the southern Grenville Province records a collisional and postcollisional history during the period 1.20–1.15 Ga in the Adirondack Lowlands (New York State, USA) and the Frontenac terrane (Ontario, Canada). The 1.20 Ga bimodal Antwerp-Rossie suite of the Adirondack Lowlands was produced by subduction in the Trans-Adirondack backarc basin. This was followed by intrusion of the 1.18 Ga alkalic to calc-alkalic Hermon granite, which may have been generated by melting of metasomatized mantle during collision of the Adirondack Lowlands and Frontenac terrane during the Shawinigan orogeny. The Hyde School gneiss plutons intruded the Adirondack Lowlands at 1.17 Ga, and Rockport granite intruded into the Adirondack Lowlands and Frontenac terrane, stitching the Black Lake shear zone, which marks the boundary between these terranes. Subsequent extensional collapse and lithospheric delamination caused voluminous anorthosite-mangerite-charnockite-granite plutonism. In the Frontenac terrane, this event is represented by the 1.18–1.15 Ga Frontenac suite, which is composed predominately of ferroan granitoids produced from melting of the lower crust by underplating mafic magmas. The Edwardsville, Honey Hill, and Beaver Creek plutons are newly recognized members of this suite in the Adirondack Lowlands. High oxygen isotope ratios of this suite in the central Frontenac terrane and western Adirondack Lowlands point to the presence of underthrust altered oceanic rocks in the lower crust. Oxygen isotopes of the Frontenac suite in both terranes preclude its derivation from mantle melts alone. 
    more » « less
  3. The Black Hills of western South Dakota and eastern Wyoming were uplifted as a result of the Laramide orogeny occupying the suture between the Wyoming and Superior Cratons. Two exposures of Archean orthogneiss, the Bear Mountain Terrane and the Little Elk Granite (LEG), represent the oldest rocks exposed in the Precambrian core of the Black Hills and offer the opportunity to study tectonic processes involved in forming the Laurentian craton. This study presents new structural field data (orientation of foliation planes, stretching lineations, and cross cutting relations; n=270 measurements) along a ~5 km transect that record the deformation history of the LEG. Two dominant fabric types were found in outcrop: augen gneiss (type 1) and mylonitized granite (type 2). The type 1 fabric is characterized by 1-5 cm K-feldspar crystals aligned to give top-down or “normal” sense of shear, small-scale folding of the fabric, and is cross-cut by aplite dikes in multiple sites. The type 2 mylonitic fabric overprints the type 1 fabric and intensifies from east to west along the transect, resulting in a loss of the type 1 fabric. The stretching lineation in the type 2 fabric plunges down dip with shear sense indicators observable in outcrop. Both fabrics display a NW/SE striking and ~70°SW dipping foliation at every site. Yet, subtle folding of the type 1 fabric at some sites causes it to be crosscut by the type 2 fabric. Based on the high-temperature deformation features in the type 1 fabric and the cross-cutting relationship with aplite dikes, we interpret that the type 1 fabric formed during emplacement of the granite. Assuming the LEG has not experienced significant tilting since emplacement, the top-down shear sense recorded by alignment of K-feldspar may suggest emplacement of the LEG into an extensional setting. Our observations of the type 2 fabric, including down-plunge stretching lineations and opposing shear sense indicators support previous interpretations of transpressional deformation within the LEG and metasedimentary rocks sheared along its western margin. With the new data describing shear zone kinematics in the LEG, we interpret that the type 1 fabric formed prior to suturing of the Wyoming and Superior Cratons and the type 2 fabric formed during craton suturing. 
    more » « less
  4. The Montana metasedimentary terrane in the northern Wyoming Province provides valuable insight into crustal formation and reworking processes along the cratonic margin and offers a unique opportunity to decipher the complex Neoarchean−Paleoproterozoic terrane assembly in southwestern Laurentia. We report new zircon U-Pb dates and Hf isotopes from seven metaigneous samples in the northwestern Montana metasedimentary terrane. The internal textures of zircon in this study are complex; some lack inherited cores and metamorphic overgrowths, while others exhibit core-rim relationships. Based on the cathodoluminescence (CL) features, we interpret these grains to be magmatic populations. These data demonstrate discrete igneous pulses at 2.7 Ga, 2.4 Ga, and 1.7 Ga, which indicate significant crustal formation intervals in the Montana metasedimentary terrane. Zircons at 2.7 Ga have positive εHf values (+2.4 to +0.9) that indicate a depleted mantle source. Most 2.4 Ga and 1.7 Ga samples have negative εHf values (−1.6 to −15.5), which indicate significant contributions from preexisting crust. Two 1.7 Ga samples, however, have near-chondritic εHf values (+0.4 to +0.3) that indicate larger juvenile contributions. The time-integrated Hf isotope trend suggests that the Paleoproterozoic zircons were produced from a mixture of older crust and juvenile mantle inputs. Additionally, the isotopic age fingerprint of the Montana metasedimentary terrane suggests that it differs from northern-bounding terranes. Viewed more broadly, the 2.7 Ga and 1.7 Ga age peaks that the Montana metasedimentary terrane shares with the global zircon age spectrum suggest that the drivers of these events in the Montana metasedimentary terrane were common throughout the Earth and may be associated with the assembly of supercontinents Kenorland and Nuna.

     
    more » « less
  5. null (Ed.)
    The northern margin of the Neoproterozoic Timanide Orogen is truncated by Paleozoic deformation of the Caledonian Orogen. Evidence for dispersion of terranes affected by the Timanide Orogen is documented through contemporaneous tectonothermal activity, and by detrital zircon in sedimentary rock from across the Arctic Ocean margins. However, directly tying these terranes to the Caledonide realm is hindered by the paucity of appropriate events in proximal terranes. The Ward Hunt Pluton, a previously undated syenite–monzodiorite intrusion located on Ward Hunt Island, northern Pearya terrane, yields a crystallization age of 542 ± 2 Ma. Trace-element data from the igneous zircon suggest that the pluton intruded older metasedimentary rocks of the terrane as part of a volcanic arc system, indicated by juvenile Hf isotopic signatures and traceelement data. The data support links between the Pearya terrane and other Neoproterozoic–Cambrian arc systems, such as those proposed in Arctic Alaska-Chukota and the Alexander terrane. 
    more » « less