skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens
Volatile organic compounds (VOCs) are a group of aromatic or chlorinated organic chemicals commonly found in manufactured products that have high vapor pressure, and thus vaporize readily at room temperature. While airshed VOCs are well studied and have provided insights into public health issues, we suggest that belowground VOCs and the related vapor intrusion process could be equally or even more relevant to public health. The persistence, movement, remediation, and human health implications of subsurface VOCs in urban landscapes remain relatively understudied despite evidence of widespread contamination. This review explores the state of the science of subsurface movement and remediation of VOCs through groundwater and soils, the linkages between these poorly understood contaminant exposure pathways and health outcomes based on research in various animal models, and describes the role of these contaminants in human health, focusing on birth outcomes, notably low birth weight and preterm birth. Finally, this review provides recommendations for future research to address knowledge gaps that are essential for not only tackling health disparities and environmental injustice in post-industrial cities, but also protecting and preserving critical freshwater resources.  more » « less
Award ID(s):
1735038
PAR ID:
10296964
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Environmental Research and Public Health
Volume:
17
Issue:
23
ISSN:
1660-4601
Page Range / eLocation ID:
8755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Permafrost thaw increases the bioavailability of ancient organic matter, facilitating microbial metabolism of volatile organic compounds (VOCs), carbon dioxide, and methane (CH4). The formation of thermokarst (thaw) lakes in icy, organic-rich Yedoma permafrost leads to high CH4emissions, and subsurface microbes that have the potential to be biogeochemical drivers of organic carbon turnover in these systems. However, to better characterize and quantify rates of permafrost changes, methods that further clarify the relationship between subsurface biogeochemical processes and microbial dynamics are needed. In this study, we investigated four sites (two well-drained thermokarst mounds, a drained thermokarst lake, and the terrestrial margin of a recently formed thermokarst lake) to determine whether biogenic VOCs (1) can be effectively collected during winter, and (2) whether winter sampling provides more biologically significant VOCs correlated with subsurface microbial metabolic potential. During the cold season (March 2023), we drilled boreholes at the four sites and collected cores to simultaneously characterize microbial populations and captured VOCs. VOC analysis of these sites revealed “fingerprints” that were distinct and unique to each site. Total VOCs from the boreholes included > 400 unique VOC features, including > 40 potentially biogenic VOCs related to microbial metabolism. Subsurface microbial community composition was distinct across sites; for example, methanogenic archaea were far more abundant at the thermokarst site characterized by high annual CH4emissions. The results obtained from this method strongly suggest that ∼10% of VOCs are potentially biogenic, and that biogenic VOCs can be mapped to subsurface microbial metabolisms. By better revealing the relationship between subsurface biogeochemical processes and microbial dynamics, this work advances our ability to monitor and predict subsurface carbon turnover in Arctic soils. 
    more » « less
  2. Volatile organic compounds (VOCs) that evaporate under standard atmospheric conditions are of growing concern. This is because it is well established that VOCs represent major contamination risks since release of these compounds into the atmosphere can contribute to global warming, and thus, can also be detrimental to the overall health of worldwide populations including plants, animals, and humans. Consequently, the detection, discrimination, and quantification of VOCs have become highly relevant areas of research over the past few decades. One method that has been and continues to be creatively developed for analyses of VOCs is the Quartz Crystal Microbalance (QCM). In this review, we summarize and analyze applications of QCM devices for the development of sensor arrays aimed at the detection of environmentally relevant VOCs. Herein, we also summarize applications of a variety of coatings, e.g., polymers, macrocycles, and ionic liquids that have been used and reported in the literature for surface modification in order to enhance sensing and selective detection of VOCs using quartz crystal resonators (QCRs) and thus QCM. In this review, we also summarize novel electronic systems that have been developed for improved QCM measurements. 
    more » « less
  3. Abstract Many populations experience high seasonal temperatures. Pregnant women are considered vulnerable to extreme heat because ambient heat exposure has been linked to pregnancy complications including preterm birth and low birthweight. The physiological mechanisms that underpin these associations are poorly understood. We reviewed the existing research evidence to clarify the mechanisms that lead to adverse pregnancy outcomes in order to inform public health actions. A multi-disciplinary expert group met to review the existing evidence base and formulate a consensus regarding the physiological mechanisms that mediate the effect of high ambient temperature on pregnancy. A literature search was conducted in advance of the meeting to identify existing hypotheses and develop a series of questions and themes for discussion. Numerous hypotheses have been generated based on animal models and limited observational studies. There is growing evidence that pregnant women are able to appropriately thermoregulate; however, when exposed to extreme heat, there are a number of processes that may occur which could harm the mother or fetus including a reduction in placental blood flow, dehydration, and an inflammatory response that may trigger preterm birth. There is a lack of substantial evidence regarding the processes that cause heat exposure to harm pregnant women. Research is urgently needed to identify what causes the adverse outcomes in pregnancy related to high ambient temperatures so that the impact of climate change on pregnant women can be mitigated. 
    more » « less
  4. null (Ed.)
    Background Human movement is one of the forces that drive the spatial spread of infectious diseases. To date, reducing and tracking human movement during the COVID-19 pandemic has proven effective in limiting the spread of the virus. Existing methods for monitoring and modeling the spatial spread of infectious diseases rely on various data sources as proxies of human movement, such as airline travel data, mobile phone data, and banknote tracking. However, intrinsic limitations of these data sources prevent us from systematic monitoring and analyses of human movement on different spatial scales (from local to global). Objective Big data from social media such as geotagged tweets have been widely used in human mobility studies, yet more research is needed to validate the capabilities and limitations of using such data for studying human movement at different geographic scales (eg, from local to global) in the context of global infectious disease transmission. This study aims to develop a novel data-driven public health approach using big data from Twitter coupled with other human mobility data sources and artificial intelligence to monitor and analyze human movement at different spatial scales (from global to regional to local). Methods We will first develop a database with optimized spatiotemporal indexing to store and manage the multisource data sets collected in this project. This database will be connected to our in-house Hadoop computing cluster for efficient big data computing and analytics. We will then develop innovative data models, predictive models, and computing algorithms to effectively extract and analyze human movement patterns using geotagged big data from Twitter and other human mobility data sources, with the goal of enhancing situational awareness and risk prediction in public health emergency response and disease surveillance systems. Results This project was funded as of May 2020. We have started the data collection, processing, and analysis for the project. Conclusions Research findings can help government officials, public health managers, emergency responders, and researchers answer critical questions during the pandemic regarding the current and future infectious risk of a state, county, or community and the effectiveness of social/physical distancing practices in curtailing the spread of the virus. International Registered Report Identifier (IRRID) DERR1-10.2196/24432 
    more » « less
  5. Abstract Purpose of Review Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. Recent Findings Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Summary Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice. 
    more » « less