skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monitoring the Spatial Spread of COVID-19 and Effectiveness of Control Measures Through Human Movement Data: Proposal for a Predictive Model Using Big Data Analytics
Background Human movement is one of the forces that drive the spatial spread of infectious diseases. To date, reducing and tracking human movement during the COVID-19 pandemic has proven effective in limiting the spread of the virus. Existing methods for monitoring and modeling the spatial spread of infectious diseases rely on various data sources as proxies of human movement, such as airline travel data, mobile phone data, and banknote tracking. However, intrinsic limitations of these data sources prevent us from systematic monitoring and analyses of human movement on different spatial scales (from local to global). Objective Big data from social media such as geotagged tweets have been widely used in human mobility studies, yet more research is needed to validate the capabilities and limitations of using such data for studying human movement at different geographic scales (eg, from local to global) in the context of global infectious disease transmission. This study aims to develop a novel data-driven public health approach using big data from Twitter coupled with other human mobility data sources and artificial intelligence to monitor and analyze human movement at different spatial scales (from global to regional to local). Methods We will first develop a database with optimized spatiotemporal indexing to store and manage the multisource data sets collected in this project. This database will be connected to our in-house Hadoop computing cluster for efficient big data computing and analytics. We will then develop innovative data models, predictive models, and computing algorithms to effectively extract and analyze human movement patterns using geotagged big data from Twitter and other human mobility data sources, with the goal of enhancing situational awareness and risk prediction in public health emergency response and disease surveillance systems. Results This project was funded as of May 2020. We have started the data collection, processing, and analysis for the project. Conclusions Research findings can help government officials, public health managers, emergency responders, and researchers answer critical questions during the pandemic regarding the current and future infectious risk of a state, county, or community and the effectiveness of social/physical distancing practices in curtailing the spread of the virus. International Registered Report Identifier (IRRID) DERR1-10.2196/24432  more » « less
Award ID(s):
2028791
PAR ID:
10224200
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
JMIR Research Protocols
Volume:
9
Issue:
12
ISSN:
1929-0748
Page Range / eLocation ID:
e24432
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Infectious disease spread within the human population can be conceptualized as a complex system composed of individuals who interact and transmit viruses through spatio-temporal processes that manifest across and between scales. The complexity of this system ultimately means that the spread of infectious diseases is difficult to understand, predict, and respond to effectively. Research interest in GeoAI for public health has been fueled by the increased availability of rich data sources such as human mobility data, OpenStreetMap data, contact tracing data, symptomatic online surveys, retail and commerce data, genomics data, and more. This data availability has resulted in a wide variety of data-driven solutions for infectious disease spread prediction which show potential in enhancing our forecasting capabilities. This book chapter (1) motivates the need for AI-based solutions in public health by showing the heterogeneity of human behavior related to health, (2) provides a brief survey of current state-of-the-art solutions using AI for infectious disease spread prediction, (3) describes a use-case of using large-scale human mobility data to inform AI models for the prediction of infectious disease spread in a city, and (4) provides future research directions and ideas. 
    more » « less
  2. The COVID-19 pandemic demonstrated the importance of social distancing practices to stem the spread of the virus. However, compliance with public health guidelines was mixed. Understanding what factors are associated with differences in compliance can improve public health messaging since messages could be targeted and tailored to different population segments. We utilize Twitter data on social mobility during COVID-19 to reveal which populations practiced social distancing and what factors correlated with this practice. We analyze correlations between demographic and political affiliation with reductions in physical mobility measured by public geolocation tweets. We find significant differences in mobility reduction between these groups in the United States. We observe that males, Asian and Latinx individuals, older individuals, Democrats, and people from higher population density states exhibited larger reductions in movement. Furthermore, our study also unveils meaningful insights into the interactions between different groups. We hope these findings will provide evidence to support public health policy-making. 
    more » « less
  3. Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general. 
    more » « less
  4. Understanding the space-time dynamics of human activities is essential in studying human security issues such as climate change impacts, pandemic spreading, or urban sustainability. Geotagged social media posts provide an open and space-time continuous data source with user locations which is convenient for studying human movement. However, the reliability of Chinese geotagged social media data for representing human mobility remains unclear. This study compares human movement data derived from the posts of Sina Weibo, one of the largest social media software in China, and that of Baidu Qianxi, a high-resolution human movement dataset from ‘Baidu Map’, a popular location-based service in China with 1.3 billion users. Correlation analysis was conducted from multiple dimensions of time periods (weekly and monthly), geographic scales (cities and provinces), and flow directions (inflow and outflow), and a case study on COVID-19 transmission was further explored with such data. The result shows that Sina Weibo data can reveal similar patterns as that of Baidu Qianxi, and that the correlation is higher at the provincial level than at the city level and higher at the monthly scale than at the weekly scale. The study also revealed spatial variations in the degree of similarity between the two sources. Findings from this study reveal the values and properties and spatiotemporal heterogeneity of human mobility data extracted from Weibo tweets, providing a reference for the proper use of social media posts as the data sources for human mobility studies. 
    more » « less
  5. Abstract Susceptibility to infectious diseases such as COVID-19 depends on how those diseases spread. Many studies have examined the decrease in COVID-19 spread due to reduction in travel. However, less is known about how much functional geographic regions, which capture natural movements and social interactions, limit the spread of COVID-19. To determine boundaries between functional regions, we apply community-detection algorithms to large networks of mobility and social-media connections to construct geographic regions that reflect natural human movement and relationships at the county level in the coterminous United States. We measure COVID-19 case counts, case rates, and case-rate variations across adjacent counties and examine how often COVID-19 crosses the boundaries of these functional regions. We find that regions that we construct using GPS-trace networks and especially commute networks have the lowest COVID-19 case rates along the boundaries, so these regions may reflect natural partitions in COVID-19 transmission. Conversely, regions that we construct from geolocated Facebook friendships and Twitter connections yield less effective partitions. Our analysis reveals that regions that are derived from movement flows are more appropriate geographic units than states for making policy decisions about opening areas for activity, assessing vulnerability of populations, and allocating resources. Our insights are also relevant for policy decisions and public messaging in future emergency situations. 
    more » « less