skip to main content

Title: FReaC Cache: Folded-logic Reconfigurable Computing in the Last Level Cache
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE/ACM International Symposium on Microarchitecture (MICRO)
Page Range / eLocation ID:
102 to 117
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Content delivery networks (CDNs) distribute much of the Internet content by caching and serving the objects requested by users. A major goal of a CDN is to maximize the hit rates of its caches, thereby enabling faster content downloads to the users. Content caching involves two components: an admission algorithm to decide whether to cache an object and an eviction algorithm to decide which object to evict from the cache when it is full. In this paper, we focus on cache admission and propose a novel algorithm called RL-Cache that uses model-free reinforcement learning (RL) to decide whether or not to admit a requested object into the CDN's cache. Unlike prior approaches that use a small set of criteria for decision making, RL-Cache weights a large set of features that include the object size, recency, and frequency of access. We develop a publicly available implementation of RL-Cache and perform an evaluation using production traces for the image, video, and web traffic classes from Akamai's CDN. The evaluation shows that RL-Cache improves the hit rate in comparison with the state of the art and imposes only a modest resource overhead on the CDN servers. Further, RL-Cache is robust enough that it can be trained in one location and executed on request traces of the same or different traffic classes in other locations of the same geographic region. 
    more » « less
  2. Over the past decade, three-dimensional die stacking technology has been considered for building large-scale in-package memory systems. In particular, in-package DRAM cache has been considered as a promising solution for high bandwidth and large-scale cache architectures. There are, however, significant challenges such as limited energy efficiency, costly tag management, and physical limitations for scalability that need to be effectively addressed before one can adopt in-package caches in the real-world applications. This paper proposes R-Cache, an in-package cache made by 3D die stacking of memristive memory arrays to alleviate the above-mentioned challenges. Our simulation results on a set of memory intensive parallel applications indicate that R-Cache outperforms the state-of-the-art proposals for in-package caches. R-Cache improves performance by 38% and 27% over the state-of-the-art direct mapped and set associative cache architectures, respectively. Moreover, R-Cache results in averages of 40% and 27% energy reductions as compared to the direct mapped and set-associative cache systems. 
    more » « less