We consider the problem of clustering data sets in the presence of arbitrary outliers. Traditional clustering algorithms such as k-means and spectral clustering are known to perform poorly for data sets contaminated with even a small number of outliers. In this paper, we develop a provably robust spectral clustering algorithm that applies a simple rounding scheme to denoise a Gaussian kernel matrix built from the data points and uses vanilla spectral clustering to recover the cluster labels of data points. We analyze the performance of our algorithm under the assumption that the “good” data points are generated from a mixture of sub-Gaussians (we term these “inliers”), whereas the outlier points can come from any arbitrary probability distribution. For this general class of models, we show that the misclassification error decays at an exponential rate in the signal-to-noise ratio, provided the number of outliers is a small fraction of the inlier points. Surprisingly, this derived error bound matches with the best-known bound for semidefinite programs (SDPs) under the same setting without outliers. We conduct extensive experiments on a variety of simulated and real-world data sets to demonstrate that our algorithm is less sensitive to outliers compared with other state-of-the-art algorithms proposed in the literature. Funding: G. A. Hanasusanto was supported by the National Science Foundation Grants NSF ECCS-1752125 and NSF CCF-2153606. P. Sarkar gratefully acknowledges support from the National Science Foundation Grants NSF DMS-1713082, NSF HDR-1934932 and NSF 2019844. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2317 .
more »
« less
Neuron matching in C. elegans with robust approximate linear regression without correspondence.
We propose methods for estimating correspondence between two point sets under the presence of outliers in both the source and target sets. The proposed algorithms expand upon the theory of the regression without correspondence problem to estimate transformation coefficients using unordered multisets of covariates and responses. Previous theoretical analysis of the problem has been done in a setting where the responses are a complete permutation of the regressed covariates. This paper expands the problem setting by analyzing the cases where only a subset of the responses is a permutation of the regressed covariates in addition to some covariates possibly being adversarial outliers. We term this problem robust regression without correspondence and provide several algorithms based on random sample consensus for exact and approximate recovery in a noiseless and noisy one-dimensional setting as well as an approximation algorithm for multiple dimensions. The theoretical guarantees of the algorithms are verified in simulated data. We demonstrate an important computational neuroscience application of the proposed framework by demonstrating its effectiveness in a Caenorhabditis elegans neuron matching problem where the presence of outliers in both the source and target nematodes is a natural tendency
more »
« less
- Award ID(s):
- 1912194
- PAR ID:
- 10297084
- Date Published:
- Journal Name:
- IEEE/CVF Winter Conference on Applications of Computer Vision 2021
- Page Range / eLocation ID:
- 2837-2846
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We consider a regression problem, where the correspondence between the input and output data is not available. Such shuffled data are commonly observed in many real world problems. Take flow cytometry as an example: the measuring instruments are unable to preserve the correspondence between the samples and the measurements. Due to the combinatorial nature of the problem, most of the existing methods are only applicable when the sample size is small, and are limited to linear regression models. To overcome such bottlenecks, we propose a new computational framework --- ROBOT --- for the shuffled regression problem, which is applicable to large data and complex models. Specifically, we propose to formulate regression without correspondence as a continuous optimization problem. Then by exploiting the interaction between the regression model and the data correspondence, we propose to develop a hypergradient approach based on differentiable programming techniques. Such a hypergradient approach essentially views the data correspondence as an operator of the regression model, and therefore it allows us to find a better descent direction for the model parameters by differentiating through the data correspondence. ROBOT is quite general, and can be further extended to an inexact correspondence setting, where the input and output data are not necessarily exactly aligned. Thorough numerical experiments show that ROBOT achieves better performance than existing methods in both linear and nonlinear regression tasks, including real-world applications such as flow cytometry and multi-object tracking.more » « less
-
Motivated by mobile devices that record data at a high frequency, we propose a new methodological framework for analyzing a semi-parametric regression model that allow us to study a nonlinear relationship between a scalar response and multiple functional predictors in the presence of scalar covariates. Utilizing functional principal component analysis (FPCA) and the least-squares kernel machine method (LSKM), we are able to substantially extend the framework of semi-parametric regression models of scalar responses on scalar predictors by allowing multiple functional predictors to enter the nonlinear model. Regularization is established for feature selection in the setting of reproducing kernel Hilbert spaces. Our method performs simultaneously model fitting and variable selection on functional features. For the implementation, we propose an effective algorithm to solve related optimization problems in that iterations take place between both linear mixed-effects models and a variable selection method (e.g., sparse group lasso). We show algorithmic convergence results and theoretical guarantees for the proposed methodology. We illustrate its performance through simulation experiments and an analysis of accelerometer data.more » « less
-
null (Ed.)Summary We investigate optimal subsampling for quantile regression. We derive the asymptotic distribution of a general subsampling estimator and then derive two versions of optimal subsampling probabilities. One version minimizes the trace of the asymptotic variance-covariance matrix for a linearly transformed parameter estimator and the other minimizes that of the original parameter estimator. The former does not depend on the densities of the responses given covariates and is easy to implement. Algorithms based on optimal subsampling probabilities are proposed and asymptotic distributions, and the asymptotic optimality of the resulting estimators are established. Furthermore, we propose an iterative subsampling procedure based on the optimal subsampling probabilities in the linearly transformed parameter estimation which has great scalability to utilize available computational resources. In addition, this procedure yields standard errors for parameter estimators without estimating the densities of the responses given the covariates. We provide numerical examples based on both simulated and real data to illustrate the proposed method.more » « less
-
This paper studies the prediction task of tensor-on-tensor regression in which both covariates and responses are multi-dimensional arrays (a.k.a., tensors) across time with arbitrary tensor order and data dimension. Existing methods either focused on linear models without accounting for possibly nonlinear relationships between covariates and responses, or directly employed black-box deep learning algorithms that failed to utilize the inherent tensor structure. In this work, we propose a Factor Augmented Tensor-on-Tensor Neural Network (FATTNN) that integrates tensor factor models into deep neural networks. We begin with summarizing and extracting useful predictive information (represented by the ``factor tensor'') from the complex structured tensor covariates, and then proceed with the prediction task using the estimated factor tensor as input of a temporal convolutional neural network. The proposed methods effectively handle nonlinearity between complex data structures, and improve over traditional statistical models and conventional deep learning approaches in both prediction accuracy and computational cost. By leveraging tensor factor models, our proposed methods exploit the underlying latent factor structure to enhance the prediction, and in the meantime, drastically reduce the data dimensionality that speeds up the computation. The empirical performances of our proposed methods are demonstrated via simulation studies and real-world applications to three public datasets. Numerical results show that our proposed algorithms achieve substantial increases in prediction accuracy and significant reductions in computational time compared to benchmark methods.more » « less
An official website of the United States government

