skip to main content

Title: Eruptive and magma feeding system evolution of Sośnica Hill Volcano (Lower Silesia, SW Poland) revealed from Volcanological, Geophysical, and Rock Magnetic Data
The Sośnica Hill volcano is part of the Oligocene to Miocene (30.9–20.0 Ma) Strzelin volcanic field. . It is located 100 km east of the Ohře Rift in the eastern part of the Fore-Sudetic Block, south of the town of Strzelin, Poland. Modern quarrying has exposed the sub-volcanic magma feeder system of the central part of the volcano and an extrusive volcanic succession that includes a 40 m thick sequence of lava flows and pyroclastic deposits that col- lectively form a complex scoria cone. Geophysical data (ground magnetometry and electric resistivity tomogra- phy (ERT)) reveal sharp linear anomalies that are interpreted to reflect normal faults dissecting the volcano. The ERT data map both high and low resistivity bodies, likely representing coherent clay-free dry rocks and partly argilized volcaniclastic deposits, respectively. Paleomagnetic data from 20 intrusive sites reveal two populations of reverse polarity site mean data; 11 sites are of low dispersion and yield a group mean direction that is discor- dant to the expected field direction, while six sites are highly scattered. Three sites did not yield interpretable re- sults. We interpret the 11 sites as time-averaged field directions that are discordant to the expected field. The high dispersion of the remaining six sites are interpreted to indicate sub-volcanic deformation associated with the growth of the volcanic construct or multiple magma pulses over an extended period of time relative to secu- lar variation. AMS data from 35 sites show a range of flow directions that vary across the quarry without an or- derly pattern of fabric orientations. The flow pattern identified from dike paired margin data exhibits sub- vertical upward flow, sub-vertical downward, and moderately inclined northwest flow. Field observations and mapping indicate a complex development of the system in terms of styles of eruptive activity and structure of the final volcanic edifice. The activity included Strombolian and effusive phases, followed by phreatomagmatic, Hawaiian and again effusive eruptions. Such diversity of eruptive styles shows that the origin of the volcano is more complex than a simple, ‘textbook’ monogenetic scoria cone. Palaesoil on top of Strombolian deposits docu- ment a longer break in activity, after which eruptions resumed with different style; this is also not typical of monogenetic cones. The lateral variation in the volcanic succession suggests eruptions from several smaller, local vents. The complex subvolcanic magma flow patterns recorded in dikes match the variation of surface eruptive products and documents dynamically changing magma distribution paths in the near-surface and intra-cone part of the feeding system of the volcano.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of volcanology and geothermal research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mildly explosive eruptions—the most frequent manifestations of subaerial explosive volcanism on Earth—broadly group into two styles: Strombolian and Hawaiian. The former is characterized by sequences of intermittent discrete explosions, and the latter by sustained pyroclastic fountaining. Explosive activity during the 2018 fissure eruption of Kīlauea volcano (Hawaiʻi) provided an exceptional opportunity to record a wide range of Strombolian and Hawaiian behavior. We used high-resolution videography and image processing to quantify the frequency, duration, and steadiness (as seen by fluctuation in maximum clast height) of Hawaiian fountains and Strombolian jets. Combining these data with the currently published understanding of two-phase flow (melt + bubbles), we propose that the diversity in eruptive styles is related to melt viscosity, changing mass flux, and the extent of mechanical coupling versus decoupling of the exsolving volatile phases from the host magma. In particular, we single out the effects of the contrasts in abundance of a sub-population of the largest (meter-scale) bubbles that emerge intermittently and independently through the magma in the vent.. The coexistence of these styles—at vents often only meters apart—is a clear indication that the diversity in eruptive behavior is modulated at depths of probably no more than 100 m and perhaps as shallow as tens of meters. 
    more » « less
  2. The 2021 eruption at Tajogaite (Cumbre Vieja) volcano (La Palma, Spain) was characterized by Strombolian eruptions, Hawaiian fountaining, white gas-dominated and grey ash-rich plumes, and lava effusion from multiple vents. The variety of eruptive styles displayed simultaneously and throughout the eruption presents an opportunity to explore controls on explosivity and the relationship between explosive and effusive activity. Explosive eruption dynamics were recorded using ground-based thermal photography and videography. We show results from the analysis of short (<5 min) near-daily thermal videos taken throughout the eruption from multiple ground-based locations and continuous time-lapse thermal photos over the period November 16 to November 26. We measure the apparent radius, velocity, and volume flux of the high-temperature gas-and-ash jet and lava fountaining behaviors to investigate the evolution of the explosive activity over multiple time scales (seconds-minutes, hours, and days-weeks). We find fluctuations in volume flux of explosive material that correlate with changes in volcanic tremor and hours-long increases in explosive flux that are immediately preceded by increases in lava effusion rate. Correlated behavior at multiple vents suggests dynamic magma ascent pathways connected in the shallow (tens to hundreds of meters) sub-surface. We interpret the changes in explosivity and the relative amounts of effusive and explosivity to be the result of changes in gas flux and the degree of gas coupling.

    more » « less
  3. Abstract

    One of the biggest challenges in volcanic hazard assessment is to understand how and why eruptive style changes within the same eruptive period or even from one eruption to the next at a given volcano. This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas. Eruptive style depends on a set of feedback involving interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas loss and external properties such as conduit geometry. Ultimately, these parameters control the speed at which magmas ascend, decompress and outgas en route to the surface, and thus determine eruptive style and evolution.

    more » « less
  4. Abstract

    The processes and ranges of intensive variables that control magma transport and dyke propagation through the crust are poorly understood. Here we show that textural and compositional data of olivine crystals (Mg/Fe, Ni and P) from the tephra of the first months of Paricutin volcano monogenetic eruption (Mexico, 1943–1952) record fast growth and large temperature and oxygen fugacity gradients. We interpret that these gradients are due to convective magma transport in a propagating dyke to the Earth’s surface in less than a few days. The shortest time we have obtained is 0.1 day, and more than 50% of the calculated timescales are < 2 days for the earliest erupted tephra, which implies magma ascent rates of about 0.1 and 1 m s−1. The olivine zoning patterns change with the eruptive stratigraphy, and record a transition towards a more steady magma flow before the transition from explosive to effusive dynamics. Our results can inform numerical and experimental analogue models of dyke propagation, and thus facilitate a better understanding of the seismicity and other precursors of dyke-fed eruptions.

    more » « less
  5. Volcanic eruptions of rhyolitic magma often show shifts from powerful (Vulcanian to Plinian) explosive episodes to a more gentle effusion of viscous lava forming obsidian flows. Another prevailing characteris-tic of these eruptions is the presence of pyroclastic obsidians intermingled with the explosive tephra. This dense, juvenile product is similar to the tephra and obsidian flow in composition, but is generally less degassed than its flow counterpart. The formation mechanism(s) of pyroclastic obsidians and the information they can provide concerning the extent to which magma degassing modulates the eruptive style of rhyolitic eruptions are currently subject to active research. Porous tephra and pyroclastic and flow obsidians from the 1060CE Glass Mountain rhyolitic eruption at Medicine Lake Volcano (California) were analyzed for their porosity, φ, water content, H2O, and hydrogen isotopic composition, δD. H2O in porous pyroclasts is correlated negatively with δD and positively with φ, indicating that the samples were affected by post-eruptive rehydration. Numerical modeling suggests that this rehydration occurred at an average rate of 10−23.5±0.5m2s−1during the ∼960 years since the eruption, causing some pyroclasts to gain up to 1 wt%of meteoric water. Pyroclastic and flow obsidians were not affected by rehydration due to their very low porosity. Comparison between modeled δD-H2O relationships in degassing magma and values measured in the Glass Mountain samples supports the idea that rhyolitic magma degasses in closed-system until its porosity reaches a value of about 65±5%, beyond which degassing occurs in open-system until quench. During the explosive phase, rapidly ascending magma fragments soon after it becomes permeable, creating porous lapilli and ash that continue to degas in open-system within an expanding gas phase. As suggested by recent studies, some ash may aggregate and sinter on the conduit sides at different depths above the fragmentation level, partly equilibrating with the continuously fluxing heavier magmatic vapor, explaining the wide range of H2O contents and high variability in δD measured in the pyroclastic obsidians. Using only H2O and δD, it is impossible to rule out the possibility that pyroclastic obsidians may also form by permeable foam collapse, either syn-explosively near the conduit sides below the fragmentation level or during more effusive periods interspersed in the explosive phase. During the final effusive phase of the eruption, slowly ascending magma degasses in open-system until it reaches the surface, creating flows with low H2O and δD. This study shows that H2O measured in highly porous pyroclasts of a few hundred years or more cannot be used to infer syn-eruptive magma degassing pathways, unless careful assessment of post-eruptive rehydration is first carried out. If their mechanism of formation can be better understood, detailed analysis of the variations in texture and volatile content of pyroclastic obsidians throughout the explosive phase may help decipher the reasons why rhyolitic eruptions commonly shift from explosive to effusive phases. 
    more » « less