skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Families of asymmetrically functionalized germanene films as promising quantum spin Hall insulators
Topological insulators (TIs), exhibiting the quantum spin Hall (QSH) effect, are promising for developing dissipationless transport devices that can be realized under a wide range of temperatures. The search for new two-dimensional (2D) TIs is essential for TIs to be utilized at room-temperature, with applications in optoelectronics, spintronics, and magnetic sensors. In this work, we used first-principles calculations to investigate the geometric, electronic, and topological properties of GeX and GeMX (M = C, N, P, As; X = H, F, Cl, Br, I, O, S, Se, Te). In 26 of these materials, the QSH effect is demonstrated by a spin–orbit coupling (SOC) induced large band gap and a band inversion at the Γ point, similar to the case of an HgTe quantum well. In addition, engineering the intra-layer strain of certain GeMX species can transform them from a regular insulator into a 2D TI. This work demonstrates that asymmetrical chemical functionalization is a promising method to induce the QSH effect in 2D hexagonal materials, paving the way for practical application of TIs in electronics.  more » « less
Award ID(s):
1809399
PAR ID:
10297178
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
5
ISSN:
1463-9076
Page Range / eLocation ID:
3595 to 3605
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 2D topological insulators promise novel approaches towards electronic, spintronic, and quantum device applications. This is owing to unique features of their electronic band structure, in which bulk-boundary correspondences enforces the existence of 1D spin–momentum locked metallic edge states—both helical and chiral—surrounding an electrically insulating bulk. Forty years since the first discoveries of topological phases in condensed matter, the abstract concept of band topology has sprung into realization with several materials now available in which sizable bulk energy gaps—up to a few hundred meV—promise to enable topology for applications even at room-temperature. Further, the possibility of combining 2D TIs in heterostructures with functional materials such as multiferroics, ferromagnets, and superconductors, vastly extends the range of applicability beyond their intrinsic properties. While 2D TIs remain a unique testbed for questions of fundamental condensed matter physics, proposals seek to control the topologically protected bulk or boundary states electrically, or even induce topological phase transitions to engender switching functionality. Induction of superconducting pairing in 2D TIs strives to realize non-Abelian quasiparticles, promising avenues towards fault-tolerant topological quantum computing. This roadmap aims to present a status update of the field, reviewing recent advances and remaining challenges in theoretical understanding, materials synthesis, physical characterization and, ultimately, device perspectives. 
    more » « less
  2. Two-dimensional (2D) topological insulators (TIs) hold great promise for future quantum information technologies. Among the 2D-TIs, the TiNI monolayer has recently been proposed as an ideal material for achieving the quantum spin Hall effect at room temperature. Theoretical predictions suggest a sizable bandgap due to the spin–orbit coupling (SOC) of the electrons at and near the Fermi level with a nontrivial  2 topology of the electronic states, which is robust under external strain. However, our detailed first-principles calculations reveal that, in contrast to these predictions, the TiNI monolayer has a trivial bandgap in the equilibrium state with no band inversion, despite SOC opening the bandgap. Moreover, we show that electron correlation effects significantly impact the topological and structural stabilities of the system under external strains. We employed a range of density functional theory (DFT) approaches, including HSE06, PBE0, TB-mBJ, and GGA+ U , to comprehensively investigate the nontrivial topological properties of this monolayer. Our results demonstrate that using general-purpose functionals such as PBE-GGA for studying TIs can lead to false predictions, potentially misleading experimentalists in their efforts to discover new TIs. 
    more » « less
  3. The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter [1, 2]. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order [3– 10], not possible in quantum Hall and Chern insulator systems. However, the QSH insulator with quantized edge conductance remains rare, let alone that with significant correlations. In this work, we report a novel dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator that aligns with single-particle band structure calculations, manifesting enhanced nonlocal transport and quantized helical edge conductance. Interestingly, upon introducing electrons from charge neutrality, TaIrTe4 only shows metallic behavior in a small range of charge densities but quickly goes into a new insulating state, entirely unexpected based on TaIrTe4’s single-particle band structure. This insulating state could arise from a strong electronic instability near the van Hove singularities (VHS), likely leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state, marked by the revival of nonlocal transport and quantized helical edge conduction. Our observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands via CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism [3–5, 11, 12]. 
    more » « less
  4. Abstract As the thickness of a three-dimensional (3D) topological insulator (TI) becomes comparable to the penetration depth of surface states, quantum tunneling between surfaces turns their gapless Dirac electronic structure into a gapped spectrum. Whether the surface hybridization gap can host topological edge states is still an open question. Herein, we provide transport evidence of 2D topological states in the quantum tunneling regime of a bulk insulating 3D TI BiSbTeSe2. Different from its trivial insulating phase, this 2D topological state exhibits a finite longitudinal conductance at ~2e2/h when the Fermi level is aligned within the surface gap, indicating an emergent quantum spin Hall (QSH) state. The transition from the QSH to quantum Hall (QH) state in a transverse magnetic field further supports the existence of this distinguished 2D topological phase. In addition, we demonstrate a second route to realize the 2D topological state via surface gap-closing and topological phase transition mechanism mediated by a transverse electric field. The experimental realization of the 2D topological phase in a 3D TI enriches its phase diagram and marks an important step toward functionalized topological quantum devices. 
    more » « less
  5. A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe 2 . Here, we directly image the local conductivity of monolayer WTe 2 using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe 2 . Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform. 
    more » « less