skip to main content


Search for: All records

Award ID contains: 1809399

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Topological insulators (TIs), exhibiting the quantum spin Hall (QSH) effect, are promising for developing dissipationless transport devices that can be realized under a wide range of temperatures. The search for new two-dimensional (2D) TIs is essential for TIs to be utilized at room-temperature, with applications in optoelectronics, spintronics, and magnetic sensors. In this work, we used first-principles calculations to investigate the geometric, electronic, and topological properties of GeX and GeMX (M = C, N, P, As; X = H, F, Cl, Br, I, O, S, Se, Te). In 26 of these materials, the QSH effect is demonstrated by a spin–orbit coupling (SOC) induced large band gap and a band inversion at the Γ point, similar to the case of an HgTe quantum well. In addition, engineering the intra-layer strain of certain GeMX species can transform them from a regular insulator into a 2D TI. This work demonstrates that asymmetrical chemical functionalization is a promising method to induce the QSH effect in 2D hexagonal materials, paving the way for practical application of TIs in electronics. 
    more » « less