skip to main content

Title: Geometrical Optics Restricted Eavesdropping Analysis of Satellite-to-Satellite Secret Key Distillation
Traditionally, the study of quantum key distribution (QKD) assumes an omnipotent eavesdropper that is only limited by the laws of physics. However, this is not the case for specific application scenarios such as the QKD over a free-space link. In this invited paper, we introduce the geometrical optics restricted eavesdropping model for secret key distillation security analysis and apply to a few scenarios common in satellite-to-satellite applications.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the vastly growing need for secure communication, quantum key distribution (QKD) has been developed to provide high security for communications against potential attacks from the fast-developing quantum computers. Among different QKD protocols, continuous variable (CV-) QKD employing Gaussian modulated coherent states has been promising for its complete security proof and its compatibility with current communication systems in implementation with homodyne or heterodyne detection. Since satellite communication has been more and more important in developing global communication networks, there have been concerns about the security in satellite communication and how we should evaluate the security of CV-QKD in such scenarios. To better analyse the secure key rate (SKR) in this case, in this invited paper we investigate the CV-QKD SKR lower bounds under realistic assumptions over a satellite-to-satellite channel. We also investigate the eavesdropper's best strategy to apply in these scenarios. We demonstrate that for these channel conditions with well-chosen carrier centre frequency and receiver aperture size, based on channel parameters, we can optimize SKR correspondingly. The proposed satellite-based QKD system provides high security level for the coming 5G and beyond networks, the Internet of things, self-driving cars, and other fast-developing applications. 
    more » « less
  2. null (Ed.)
    Quantum key distribution (QKD) assures the theoretical information security from the physical layer by safely distributing true random numbers to the communication parties as secret keys while assuming an omnipotent eavesdropper (Eve). In recent years, with the growing applications of QKD in realistic channels such as satellite-based free-space communications, certain conditions such as the unlimited power collection ability of Eve become too strict for security analysis. Thus, in this invited paper, we give a brief overview of the quantum key distribution with a geometrical optics restricted power collection ability of Eve with its potential applications. 
    more » « less
  3. Quantum cryptography is the study of unconditional information security against an all-powerful eavesdropper in secret key distillation. However, the assumption of an omnipotent eavesdropper is too strict for some realistic implementations. In this paper, we study the realistic application model of secret key distillation over a satellite-to-satellite free-space channel in which we impose a reasonable restriction on the eavesdropper by setting an exclusion zone around the legitimate receiver as a defense strategy. We first study the case where the eavesdropper’s aperture size is unlimited so their power is only restricted by the exclusion zone. Then, we limit Eve’s aperture to a finite size and study the straightforward case when her aperture is in the same plane of Bob’s, investigating how an exclusion zone can help improve security. Correspondingly, we determine the secret key rate lower bounds as well as upper bounds. Furthermore, we also apply our results on specific discrete variable (DV) and continuous variable (CV) protocols for comparison. We show that, by putting reasonable restrictions on the eavesdropper through the realistic assumptions of an inaccessible exclusion zone, we can significantly increase the key rate in comparison to those without and do so with relatively lower transmission frequency. We conclude that this model is suitable for extended analysis in many light-gathering scenarios and for different carrier wavelengths.

    more » « less
  4. Abstract

    Quantum key distribution (QKD) has established itself as a groundbreaking technology, showcasing inherent security features that are fundamentally proven. Qubit-based QKD protocols that rely on binary encoding encounter an inherent constraint related to the secret key capacity. This limitation restricts the maximum secret key capacity to one bit per photon. On the other hand, qudit-based QKD protocols have their advantages in scenarios where photons are scarce and noise is present, as they enable the transmission of more than one secret bit per photon. While proof-of-principle entangled-based qudit QKD systems have been successfully demonstrated over the years, the current limitation lies in the maximum distribution distance, which remains at 20 km fiber distance. Moreover, in these entangled high-dimensional QKD systems, the witness and distribution of quantum steering have not been shown before. Here we present a high-dimensional time-bin QKD protocol based on energy-time entanglement that generates a secure finite-length key capacity of 2.39 bit/coincidences and secure cryptographic finite-length keys at 0.24 Mbits s−1in a 50 km optical fiber link. Our system is built entirely using readily available commercial off-the-shelf components, and secured by nonlocal dispersion cancellation technique against collective Gaussian attacks. Furthermore, we set new records for witnessing both energy-time entanglement and quantum steering over different fiber distances. When operating with a quantum channel loss of 39 dB, our system retains its inherent characteristic of utilizing large-alphabet. This enables us to achieve a secure key rate of 0.30 kbits s−1and a secure key capacity of 1.10 bit/coincidences, considering finite-key effects. Our experimental results closely match the theoretical upper bound limit of secure cryptographic keys in high-dimensional time-bin QKD protocols (Moweret al2013Phys. Rev.A87062322; Zhanget al2014Phys. Rev. Lett.112120506), and outperform recent state-of-the-art qubit-based QKD protocols in terms of secure key throughput using commercial single-photon detectors (Wengerowskyet al2019Proc. Natl Acad. Sci.1166684; Wengerowskyet al2020npj Quantum Inf.65; Zhanget al2014Phys. Rev. Lett.112120506; Zhanget al2019Nat. Photon.13839; Liuet al2019Phys. Rev. Lett.122160501; Zhanget al2020Phys. Rev. Lett.125010502; Weiet al2020Phys. Rev.X10031030). The simple and robust entanglement-based high-dimensional time-bin protocol presented here provides potential for practical long-distance quantum steering and QKD with multiple secure bits-per-coincidence, and higher secure cryptographic keys compared to mature qubit-based QKD protocols.

    more » « less
  5. Twin-field QKD (TF-QKD) protocols allow for increased key rates over long distances when compared to standard QKD protocols. They are even able to surpass the PLOB bound without the need for quantum repeaters. In this work, we revisit a previous TF-QKD protocol and derive a new, simple, proof of security for it. We also look at several variants of the protocol and investigate their performance, showing some interesting behaviors due to the asymmetric nature of the protocol. 
    more » « less