Conventionally, unconditional information security has been studied by quantum cryptography although the assumption of an omnipotent eavesdropper is too strict for some realistic implementations. In this paper, we study the realistic secret key distillation over a satellite-to-satellite free space optics channel where we assume a limited-sized aperture eavesdropper (Eve) in the same plane of the legitimate receiver (Bob) and determine the secret key rate (SKR) lower bounds correspondingly. We first study the input power dependency without assumptions on Bob’s detection scheme before optimizing the input power to determine lower bounds as functions of transmission distances, center frequency or Eve aperture radius. Then we calculate analytical expressions regarding the SKR lower bound and upper bound as transmission distance goes to infinity. We also incorporate specific discrete variable (DV) and continuous variable (CV) protocols for comparison. We demonstrate that significantly higher SKR lower bounds can be achieved compared to traditional unrestricted Eve scenario.
- Award ID(s):
- 1907918
- PAR ID:
- 10249505
- Date Published:
- Journal Name:
- 2020 22nd International Conference on Transparent Optical Networks (ICTON)
- Page Range / eLocation ID:
- We.A2.1, 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantum key distribution (QKD) has established itself as a groundbreaking technology, showcasing inherent security features that are fundamentally proven. Qubit-based QKD protocols that rely on binary encoding encounter an inherent constraint related to the secret key capacity. This limitation restricts the maximum secret key capacity to one bit per photon. On the other hand, qudit-based QKD protocols have their advantages in scenarios where photons are scarce and noise is present, as they enable the transmission of more than one secret bit per photon. While proof-of-principle entangled-based qudit QKD systems have been successfully demonstrated over the years, the current limitation lies in the maximum distribution distance, which remains at 20 km fiber distance. Moreover, in these entangled high-dimensional QKD systems, the witness and distribution of quantum steering have not been shown before. Here we present a high-dimensional time-bin QKD protocol based on energy-time entanglement that generates a secure finite-length key capacity of 2.39 bit/coincidences and secure cryptographic finite-length keys at 0.24 Mbits s−1in a 50 km optical fiber link. Our system is built entirely using readily available commercial off-the-shelf components, and secured by nonlocal dispersion cancellation technique against collective Gaussian attacks. Furthermore, we set new records for witnessing both energy-time entanglement and quantum steering over different fiber distances. When operating with a quantum channel loss of 39 dB, our system retains its inherent characteristic of utilizing large-alphabet. This enables us to achieve a secure key rate of 0.30 kbits s−1and a secure key capacity of 1.10 bit/coincidences, considering finite-key effects. Our experimental results closely match the theoretical upper bound limit of secure cryptographic keys in high-dimensional time-bin QKD protocols (Mower
et al 2013Phys. Rev. A87 062322; Zhanget al 2014Phys. Rev. Lett. 112 120506), and outperform recent state-of-the-art qubit-based QKD protocols in terms of secure key throughput using commercial single-photon detectors (Wengerowskyet al 2019Proc. Natl Acad. Sci. 116 6684; Wengerowskyet al 2020npj Quantum Inf. 6 5; Zhanget al 2014Phys. Rev. Lett. 112 120506; Zhanget al 2019Nat. Photon. 13 839; Liuet al 2019Phys. Rev. Lett. 122 160501; Zhanget al 2020Phys. Rev. Lett. 125 010502; Weiet al 2020Phys. Rev. X10 031030). The simple and robust entanglement-based high-dimensional time-bin protocol presented here provides potential for practical long-distance quantum steering and QKD with multiple secure bits-per-coincidence, and higher secure cryptographic keys compared to mature qubit-based QKD protocols. -
Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses.more » « less
-
null (Ed.)Traditionally, the study of quantum key distribution (QKD) assumes an omnipotent eavesdropper that is only limited by the laws of physics. However, this is not the case for specific application scenarios such as the QKD over a free-space link. In this invited paper, we introduce the geometrical optics restricted eavesdropping model for secret key distillation security analysis and apply to a few scenarios common in satellite-to-satellite applications.more » « less
-
null (Ed.)Quantum key distribution (QKD) assures the theoretical information security from the physical layer by safely distributing true random numbers to the communication parties as secret keys while assuming an omnipotent eavesdropper (Eve). In recent years, with the growing applications of QKD in realistic channels such as satellite-based free-space communications, certain conditions such as the unlimited power collection ability of Eve become too strict for security analysis. Thus, in this invited paper, we give a brief overview of the quantum key distribution with a geometrical optics restricted power collection ability of Eve with its potential applications.more » « less