skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Defending against Backdoors in Federated Learning with Robust Learning Rate
Federated learning (FL) allows a set of agents to collaboratively train a model without sharing their potentially sensitive data. This makes FL suitable for privacy-preserving applications. At the same time, FL is susceptible to adversarial attacks due to decentralized and unvetted data. One important line of attacks against FL is the backdoor attacks. In a backdoor attack, an adversary tries to embed a backdoor functionality to the model during training that can later be activated to cause a desired misclassification. To prevent backdoor attacks, we propose a lightweight defense that requires minimal change to the FL protocol. At a high level, our defense is based on carefully adjusting the aggregation server's learning rate, per dimension and per round, based on the sign information of agents' updates. We first conjecture the necessary steps to carry a successful backdoor attack in FL setting, and then, explicitly formulate the defense based on our conjecture. Through experiments, we provide empirical evidence that supports our conjecture, and we test our defense against backdoor attacks under different settings. We observe that either backdoor is completely eliminated, or its accuracy is significantly reduced. Overall, our experiments suggest that our defense significantly outperforms some of the recently proposed defenses in the literature. We achieve this by having minimal influence over the accuracy of the trained models. In addition, we also provide convergence rate analysis for our proposed scheme.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Federated learning (FL) is an emerging machine learning paradigm. With FL, distributed data owners aggregate their model updates to train a shared deep neural network collaboratively, while keeping the training data locally. However, FL has little control over the local data and the training process. Therefore, it is susceptible to poisoning attacks, in which malicious or compromised clients use malicious training data or local updates as the attack vector to poison the trained global model. Moreover, the performance of existing detection and defense mechanisms drops significantly in a scaled-up FL system with non-iid data distributions. In this paper, we propose a defense scheme named CONTRA to defend against poisoning attacks, e.g., label-flipping and backdoor attacks, in FL systems. CONTRA implements a cosine-similarity-based measure to determine the credibility of local model parameters in each round and a reputation scheme to dynamically promote or penalize individual clients based on their per-round and historical contributions to the global model. With extensive experiments, we show that CONTRA significantly reduces the attack success rate while achieving high accuracy with the global model. Compared with a state-of-the-art (SOTA) defense, CONTRA reduces the attack success rate by 70% and reduces the global model performance degradation by 50%. 
    more » « less
  2. The globalized semiconductor supply chain significantly increases the risk of exposing System-on-Chip (SoC) designs to malicious implants, popularly known as hardware Trojans. Traditional simulation-based validation is unsuitable for detection of carefully-crafted hardware Trojans with extremely rare trigger conditions. While machine learning (ML) based Trojan detection approaches are promising due to their scalability as well as detection accuracy, ML-based methods themselves are vulnerable from Trojan attacks. In this paper, we propose a robust backdoor attack on ML-based Trojan detection algorithms to demonstrate this serious vulnerability. The proposed framework is able to design an AI Trojan and implant it inside the ML model that can be triggered by specific inputs. Experimental results demonstrate that the proposed AI Trojans can bypass state-of-the-art defense algorithms. Moreover, our approach provides a fast and cost-effective solution in achieving 100% attack success rate that significantly outperforms state-of-the art approaches based on adversarial attacks. 
    more » « less
  3. The pervasiveness of neural networks (NNs) in critical computer vision and image processing applications makes them very attractive for adversarial manipulation. A large body of existing research thoroughly investigates two broad categories of attacks targeting the integrity of NN models. The first category of attacks, commonly called Adversarial Examples, perturbs the model's inference by carefully adding noise into input examples. In the second category of attacks, adversaries try to manipulate the model during the training process by implanting Trojan backdoors. Researchers show that such attacks pose severe threats to the growing applications of NNs and propose several defenses against each attack type individually. However, such one-sided defense approaches leave potentially unknown risks in real-world scenarios when an adversary can unify different attacks to create new and more lethal ones bypassing existing defenses. In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trusting the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning as well as high-resolution images. 
    more » « less
  4. Due to its decentralized nature, Federated Learning (FL) lends itself to adversarial attacks in the form of backdoors during training. The goal of a backdoor is to corrupt the performance of the trained model on specific sub-tasks (e.g., by classifying green cars as frogs). A range of FL backdoor attacks have been introduced in the literature, but also methods to defend against them, and it is currently an open question whether FL systems can be tailored to be robust against backdoors. In this work, we provide evidence to the contrary. We first establish that, in the general case, robustness to backdoors implies model robustness to adversarial examples, a major open problem in itself. Furthermore, detecting the presence of a backdoor in a FL model is unlikely assuming first order oracles or polynomial time. We couple our theoretical results with a new family of backdoor attacks, which we refer to as edge-case backdoors. An edge-case backdoor forces a model to misclassify on seemingly easy inputs that are however unlikely to be part of the training, or test data, i.e., they live on the tail of the input distribution. We explain how these edge-case backdoors can lead to unsavory failures and may have serious repercussions on fairness, and exhibit that with careful tuning at the side of the adversary, one can insert them across a range of machine learning tasks (e.g., image classification, OCR, text prediction, sentiment analysis). 
    more » « less
  5. Federated learning (FL) is known to be susceptible to model poisoning attacks in which malicious clients hamper the accuracy of the global model by sending manipulated model updates to the central server during the FL training process. Existing defenses mainly focus on Byzantine-robust FL aggregations, and largely ignore the impact of the underlying deep neural network (DNN) that is used to FL training. Inspired by recent findings on critical learning periods (CLP) in DNNs, where small gradient errors have irrecoverable impact on the final model accuracy, we propose a new defense, called a CLP-aware defense against poisoning of FL (DeFL). The key idea of DeFL is to measure fine-grained differences between DNN model updates via an easy-to-compute federated gradient norm vector (FGNV) metric. Using FGNV, DeFL simultaneously detects malicious clients and identifies CLP, which in turn is leveraged to guide the adaptive removal of detected malicious clients from aggregation. As a result, DeFL not only mitigates model poisoning attacks on the global model but also is robust to detection errors. Our extensive experiments on three benchmark datasets demonstrate that DeFL produces significant performance gain over conventional defenses against state-of-the-art model poisoning attacks. 
    more » « less