Abstract. The melt of snow and sea ice during the Arctic summer is a significant source of relatively fresh meltwater in the central Arctic. The fate of this freshwater – whether in surface melt ponds, or thin layers underneath the ice and in leads – impacts atmosphere-ice-ocean interactions and their subsequent coupled evolution. Here, we combine analyses of datasets from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (June–July, 2020) to understand the key drivers of the sea ice freshwater budget in the Central Arctic and the fate of this water over time. Freshwater budget analyses suggest that a relatively high fraction (58 %) is derived from surface melt. Additionally, the contribution from stored precipitation (snowmelt) significantly outweighs by five times the input from in situ summer precipitation (rain). The magnitude and rate of local meltwater production are remarkably similar to that observed on the prior Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. A relatively small fraction (10 %) of freshwater from melt remains in ponds, which is higher on more deformed second-year ice compared to first-year ice later in the summer. Most meltwater drains via lateral and vertical drainage channels, with vertical drainage enabling storage of freshwater internally in the ice by freshening of brine channels. In the upper ocean, freshwater can accumulate in transient meltwater layers on the order of 10 cm to 1 m thick in leads and under the ice. The presence of such layers substantially impacts the coupled system by reducing bottom melt and allowing false bottom growth, reducing heat, nutrient and gas exchange, and influencing ecosystem productivity. Regardless, the majority fraction of freshwater from melt is inferred to be ultimately incorporated into upper ocean (75 %) or stored internally in the ice (14 %). Comparison of key source and sink terms with estimates from the CESM2 climate model suggest that simulated freshwater storage in melt ponds is dramatically underestimated. This suggests pond drainage terms should be investigated as a likely explanation.
more »
« less
Meltwater sources and sinks for multiyear Arctic sea ice in summer
Abstract. On Arctic sea ice, the melt of snow and sea ice generate asummertime flux of fresh water to the upper ocean. The partitioning of thismeltwater to storage in melt ponds and deposition in the ocean hasconsequences for the surface heat budget, the sea ice mass balance, andprimary productivity. Synthesizing results from the 1997–1998 SHEBA fieldexperiment, we calculate the sources and sinks of meltwater produced on amultiyear floe during summer melt. The total meltwater input to the systemfrom snowmelt, ice melt, and precipitation from 1 June to 9 August wasequivalent to a layer of water 80 cm thick over the ice-covered and openocean. A total of 85 % of this meltwater was deposited in the ocean, and only 15 %of this meltwater was stored in ponds. The cumulative contributions ofmeltwater input to the ocean from drainage from the ice surface and bottommelting were roughly equal.
more »
« less
- PAR ID:
- 10297231
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 15
- Issue:
- 9
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 4517 to 4525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During the Arctic melt season, relatively fresh meltwater layers can accumulate under sea ice as a result of snow and ice melt, far from terrestrial freshwater inputs. Such under-ice meltwater layers, sometimes referred to as under-ice melt ponds, have been suggested to play a role in the summer sea ice mass balance both by isolating the sea ice from saltier water below, and by driving formation of ‘false bottoms’ below the sea ice. Such layers form at the interface of the fresher under-ice layer and the colder, saltier seawater below. During the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) expedition in the Central Arctic, we observed the presence of under-ice meltwater layers and false bottoms throughout July 2020 at primarily first-year ice locations. Here, we examine the distribution, prevalence, and drivers of under-ice ponds and the resulting false bottoms during this period. The average thickness of observed false bottoms and freshwater equivalent of under-ice meltwater layers was 0.08 m, with false bottom ice comprised of 74–87% FYI melt and 13–26% snow melt. Additionally, we explore these results using a 1D model to understand the role of dynamic influences on decoupling the ice from the seawater below. The model comparison suggests that the ice-ocean friction velocity was likely exceptionally low, with implications for air-ice-ocean momentum transfer. Overall, the prevalence of false bottoms was similar to or higher than noted during other observational campaigns, indicating that these features may in fact be common in the Arctic during the melt season. These results have implications for the broader ice-ocean system, as under-ice meltwater layers and false bottoms provide a source of ice growth during the melt season, potentially reduce fluxes between the ice and the ocean, isolate sea ice primary producers from pelagic nutrient sources, and may alter light transmission to the ocean below.more » « less
-
This metadata links to 16S and 18S rRNA amplicon data (raw sequence reads, NCBI Accession PRJNA895866) for seawater, sea ice, meltwater, and experimental samples from the Central Arctic Ocean collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in which the RV (Research Vessel) Polarstern was tethered to drifting sea ice from October 2019 to September 2020. Seawater samples were collected from the water column using a CTD (conductivity-temperature-depth) rosette or underway seawater tap during legs 1, 2, 3, 4, and 5 of the expedition. Sea ice samples were collected via coring (FYI (first-year ice), SYI (second-year ice)) or scooped with a saw and/or sieve (new ice formation) during legs 1, 3, 4, and 5 of the expedition. Summer meltwater was from surface layers within leads or melt ponds and was collected using pump systems during legs 4 and 5 of the expedition. Experimental samples were filtered and processed post nutrient addition, stable isotope, or elevated methane incubations to pair community structure with biogeochemical measurements. Original data published with the National Center for Biotechnology Information: https://www.ncbi.nlm.nih.gov/bioproject/895866 ; Please contact data creators before use.more » « less
-
Abstract Mass loss from the Antarctic ice sheet is projected to continue over the coming century. The resultant sea level change will have a regional pattern that evolves over time as the ocean adjusts. Accurate estimation of this evolution is crucial for local communities. Current state-of-the-art climate models typically do not couple ice sheets to the atmosphere–ocean system, and the impact of ice sheet melt has often been studied by injecting meltwater at the model ocean surface. However, observational evidence suggests that most Antarctic meltwater enters the ocean at depth through ice shelf basal melt. A previous study has demonstrated that the regional sea level pattern at a given time depends on meltwater injection depth. Here, we introduce a 2.5-layer model to investigate this dependence and develop a theory for the associated adjustment mechanisms. We find mechanisms consistent with previous literature on the ocean adjustment to changes in forcing, whereby a slower Rossby wave response off the eastern boundary follows a fast response from the western boundary current and Kelvin waves. We demonstrate that faster baroclinic Rossby waves near the surface than at depth explain the injection depth dependence of the adjustment in the 2.5-layer model. The identified Rossby wave mechanism may contribute to the dependence of the ocean’s transient adjustment on meltwater injection depth in more complex models. This work highlights processes that could cause errors in the projection of the time-varying pattern of sea level rise using surface meltwater input to represent Antarctica’s freshwater forcing. Significance StatementSea level rise is expected to be larger in some locations than in others. Accurate projections of the pattern of sea level change, which changes in time as the ocean adjusts, are essential information for local communities. One of the factors that leads to uncertainty in the local sea level change due to Antarctic melt is the depth at which this meltwater is input into an ocean model. We propose a mechanism for a faster response of sea level around the basin when meltwater is injected at the ocean surface compared to when it is injected well below the surface. This mechanism has implications for projections of the regional sea level response to Antarctic melt.more » « less
-
This dataset contains upper ocean temperature and salinity profiles made during July – September, 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the Central Arctic. The primary aim of these profiles was to capture the stratification of the upper ocean due to meltwater input throughout the summer melt season and the transition to fall freeze-up. The dataset includes data from two instruments: (i) YSI probe, and (ii) Sontek Castaway. The YSI probe was used to take point measurements of temperature and salinity, allowing for more fine-scale profiles in the upper couple of meters. The Sontek Castaway is a small conductivity, temperature, and depth (CTD) device that was used to make profiles over the upper 10s of meters, here typically in complement to the YSI observations, and are processed to 15 centimeters (cm) vertical resolution. Profiles were made in two primary locations: (i) near-surface of leads surrounding the sea ice floe, using both YSI and Castaway, and (ii) upper ocean directly beneath the sea ice, typically using YSI only. A small number of additional observations were made in coincident melt ponds and the upper ocean directly underneath. Details of collection and processing methods, including quality control for both instruments, can be found in data archive descriptions.more » « less
An official website of the United States government

