skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selection of surrogate modeling techniques for surface approximation and surrogate-based optimization
Award ID(s):
1743445
PAR ID:
10297242
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Engineering Research and Design
Volume:
170
Issue:
C
ISSN:
0263-8762
Page Range / eLocation ID:
76 to 89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strictly proper scoring rules (SPSR) are incentive compatible for eliciting information about random variables from strategic agents when the principal can reward agents after the realization of the random variables. They also quantify the quality of elicited information, with more accurate predictions receiving higher scores in expectation. In this paper, we extend such scoring rules to settings where a principal elicits private probabilistic beliefs but only has access to agents’ reports. We name our solution Surrogate Scoring Rules (SSR). SSR is built on a bias correction step and an error rate estimation procedure for a reference answer defined using agents’ reports. We show that, with a little information about the prior distribution of the random variables, SSR in a multi-task setting recover SPSR in expectation, as if having access to the ground truth. Therefore, a salient feature of SSR is that they quantify the quality of information despite the lack of ground truth, just as SPSR do for the setting with ground truth. As a by-product, SSR induce dominant uniform strategy truthfulness in reporting. Our method is verified both theoretically and empirically using data collected from real human forecasters. 
    more » « less
  2. Surrogate models are used to map input data to output data when the actual relationship between the two is unknown or computationally expensive to evaluate for sensitivity analysis, uncertainty propagation and surrogate based optimization. This work evaluates the performance of eight surrogate modeling techniques for design space approximation and surrogate based optimization applications over a set of generated datasets with known characteristics. With this work, we aim to provide general rules for selecting an appropriate surrogate model form solely based on the characteristics of the data being modeled. The computational experiments revealed that, in general, multivariate adaptive regression spline models (MARS) and single hidden layer feed forward neural networks (ANN) yielded the most accurate predictions over the design space while Random Forest (RF) models most reliably identified the locations of the optimums when used for surrogate-based optimization. 
    more » « less