Abstract Microtubules and catalytic motor proteins underlie the microscale actuation of living materials, and they have been used in reconstituted systems to harness chemical energy to drive new states of organization of soft matter (e.g., liquid crystals (LCs)). Such materials, however, are fragile and challenging to translate to technological contexts. Rapid (sub‐second) and reversible changes in the orientations of LCs at room temperature using reactions between gaseous hydrogen and oxygen that are catalyzed by Pd/Au surfaces are reported. Surface chemical analysis and computational chemistry studies confirm that dissociative adsorption of H2on the Pd/Au films reduces preadsorbed O and generates 1 ML of adsorbed H, driving nitrile‐containing LCs from a perpendicular to a planar orientation. Subsequent exposure to O2leads to oxidation of the adsorbed H, reformation of adsorbed O on the Pd/Au surface, and a return of the LC to its initial orientation. The roles of surface composition and reaction kinetics in determining the LC dynamics are described along with a proof‐of‐concept demonstration of microactuation of beads. These results provide fresh ideas for utilizing chemical energy and catalysis to reversibly actuate functional LCs on the microscale.
more »
« less
Coupling the chemical reactivity of bimetallic surfaces to the orientations of liquid crystals
The development of responsive soft materials with tailored functional properties based on the chemical reactivity of atomically precise inorganic interfaces has not been widely explored. In this communication, guided by first-principles calculations, we design bimetallic surfaces comprised of atomically thin Pd layers deposited onto Au that anchor nematic liquid crystalline phases of 4′- n -pentyl-4-biphenylcarbonitrile (5CB) and demonstrate that the chemical reactivity of these bimetallic surfaces towards Cl 2 gas can be tuned by specification of the composition of the surface alloy. Specifically, we use underpotential deposition to prepare submonolayer to multilayers of Pd on Au and employ X-ray photoelectron and infrared spectroscopy to validate computational predictions that binding of 5CB depends strongly on the Pd coverage, with ∼0.1 monolayer (ML) of Pd sufficient to cause the liquid crystal (LC) to adopt a perpendicular binding mode. Computed heats of dissociative adsorption of Cl 2 on PdAu alloy surfaces predict displacement of 5CB from these surfaces, a result that is also confirmed by experiments revealing that 1 ppm Cl 2 triggers orientational transitions of 5CB. By decreasing the coverage of Pd on Au from 1.8 ± 0.2 ML to 0.09 ± 0.02 ML, the dynamic response of 5CB to 1 ppm Cl 2 is accelerated 3X. Overall, these results demonstrate the promise of hybrid designs of responsive materials based on atomically precise interfaces formed between hard bimetallic surfaces and soft matter.
more »
« less
- PAR ID:
- 10297268
- Date Published:
- Journal Name:
- Materials Horizons
- Volume:
- 8
- Issue:
- 7
- ISSN:
- 2051-6347
- Page Range / eLocation ID:
- 2050 to 2056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Bimetallic nanoparticles remain a promising avenue to achieve highly reactive catalysts. In this contribution, we demonstrate the use of a photoswitchable peptide for the production of PdAu bimetallic nanoparticles at a variety of Pd : Au ratios. Using this peptide, the biomolecular overlayer structure can be switched between two different conformations ( cis vs. trans ) via light irradiation, thus accessing two different surface structures. The composition and arrangement of the materials was fully characterized, including atomic-level analyses, after which the reactivity of the bimetallic materials was explored using the reduction of 4-nitrophenol as a model system. Using these materials, it was demonstrated that the reactivity was maximized for the particles prepared at a Pd : Au ratio of 1 : 3 and with the peptide in the cis conformation. Such results present routes to a new generation of catalysts that could be remotely activated for on/off reactivity as a function of the ligand overlayer conformation.more » « less
-
null (Ed.)Computational methods can provide first-principles insights into the thermochemistry and kinetics of reactions at interfaces, but this capability has not been widely leveraged to design soft materials that respond selectively to chemical species. Here we address this opportunity by demonstrating the design of micrometer-thick liquid crystalline films supported on metal-perchlorate surfaces that exhibit selective orientational responses to targeted oxidizing gases. Initial electronic structure calculations predicted Mn 2+ , Co 2+ , and Ni 2+ to be promising candidate surface binding sites that (1) coordinate with nitrile-containing mesogens to orient liquid crystal (LC) phases and (2) undergo redox-triggered reactions upon exposure to humid O 3 leading to a change in the strength of binding of the nitrile group to the surface. These initial predictions were validated by experimental observations of orientational transitions of nitrile-containing LCs upon exposure to air containing parts-per-billion concentrations of O 3 . Additional first-principles calculations of reaction free energies of metal salts and oxidizing gases predicted that the same set of metal cations, if patterned on surfaces at distinct spatial locations, would provide LC responses that allow Cl 2 and O 3 to be distinguished while not responding to environmental oxidants such as O 2 and NO 2 . Experimental results are provided to support this prediction, and X-ray diffraction measurements confirmed that the experimentally observed LC responses can be understood in terms of the relative thermodynamic driving force for formation of MnO 2 , CoOOH, or NiOOH from the corresponding metal cation binding sites in the presence of humid O 3 and Cl 2 .more » « less
-
In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (Pd x Au 100− x ) alloy NPs exhibiting high nitrite degradation efficiency. Pd-on-Au NPs with 20% to 300% surface coverage (sc%) of Au showed catalytic activity commensurate with sc%. Additionally, the catalytic activity of Pd x Au 100− x alloy NPs varied based on palladium composition ( x = 6–59). The maximum nitrite removal efficiency of Pd-on-Au and Pd x Au 100− x alloy NPs was obtained at sc 100% and x = 59, respectively. The synthesized peptide-directed Pd-on-Au catalysts showed an increase in nitrite reduction three and a half times better than monometallic Pd and two and a half times better than Pd x Au 100− x NPs under comparable conditions. Furthermore, peptide-directed NPs showed high activity after five reuse cycles. Pd-on-Au NPs with more available activated palladium atoms showed high selectivity (98%) toward nitrogen gas production over ammonia.more » « less
-
Understanding the catalytic oxidation of propane is important for developing catalysts not only for catalytic oxidation of hydrocarbons in emission systems but also for selective oxidation in the chemical processing industry. For palladium-based catalysts, little is known about the identification of the chemical or intermediate species involved in propane oxidation. We describe herein findings of an investigation of the catalytic oxidation of propane over supported palladium nanoalloys with different compositions of gold (Pd n Au 100−n ), focusing on probing the chemical or intermediate species on the catalysts in correlation with the bimetallic composition and the alloying phase structure. In addition to an enhanced catalytic activity, a strong dependence of the catalytic activity on the bimetallic composition was revealed, displaying an activity maximum at a Pd : Au ratio of 50 : 50 in terms of reaction temperature. This dependence is also reflected by its dependence on the thermochemical treatment conditions. While the activity for nanoalloys with n ∼ 50 showed little change after the thermochemical treatment under oxygen, the activities for nanoalloys with n < 50 and n > 50 showed opposite trends. Importantly, this catalytic synergy is linked to the subtle differences of chemical and intermediate species which have been identified for the catalysts with different bimetallic compositions by in situ measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). For the catalytic oxidation of propane over the highly-active catalyst with a Pd : Au ratio of 50 : 50, the major species identified include acetate and bicarbonate, showing subtle differences in comparison with the identification of bicarbonate and formate for the catalyst with <50% Au (with a lower activity) and the absence of apparent species for the catalyst with >50% Au (activity is largely absent). The alloying of 50% Au in Pd is believed to increase the oxophilicity of Pd, which facilitates the first carbon–carbon bond cleavage and oxygenation of propane. The implications of the findings on the catalytic synergy of Pd alloyed with Au and the design of active Pd alloy catalysts are also discussed.more » « less
An official website of the United States government

