skip to main content


Title: Work-in-Progress: Hands-On Learning Devices for Exposure to Biomedical Applications Within Chemical Engineering
Chemical engineering students learn valuable fundamentals that can be used to enhance the medical field, yet the lack of emphasis on such applications can misguide undergraduate students as they choose their major. To address this misconception, we propose the use of a hands-on, interactive learning tool to expose freshman-level chemical engineering undergraduate students to applications that go beyond the traditional oil refining and catalysis emphases typically discussed in the introductory “Applications in Chemical Engineering” course. We developed a low-cost, modified fidget spinner that introduces students to blood separation principles. On each arm of the spinner, there exists a see-through chamber filled with fluid and microbeads at various ratios, which simulates the effect of hematocrit, or red blood cell fraction, on settling velocities and terminal position—phenomena that are utilized to enhance blood separation efficiencies. Due to COVID-19, we plan to implement this device by mailing fidget spinner kits with a complementary worksheet to the students to conduct observational experiments at home in the spring 2021 semester. We hypothesize that introducing biomedical applications early in the undergraduate experience will help students understand that chemical engineering knowledge can easily be transferred to biological systems and will have a significant impact on motivation and retention of women in the cohort. Motivational surveys will be used to assess pre- and post-implementation attitudes toward chemical engineering as a major and will be compared to control data collected in fall 2020. In the paper and presentation, we will also share the mathematical modeling behind creating the microbead blood simulant. We plan to conclude the paper and presentation with theoretical and practical implications of our findings.  more » « less
Award ID(s):
1821578
NSF-PAR ID:
10297447
Author(s) / Creator(s):
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemical engineers frequently contribute to the advancement of the medical field; however, such applications are often not covered in the undergraduate curriculum until third- or fourth-year electives. We propose implementing a hands-on learning tool in an elective third- and fourth-year course and core third-year separations class to help undergraduate students apply chemical engineering concepts to biomedical applications. The hands-on learning tool of interest is used to introduce students to blood separation principles through a microbead settling device. See-through columns are filled with fluid and microbeads at various ratios to model the effect of hematocrit, or red blood cell fraction, on cell settling velocities and separation efficiencies. We hypothesize that the use of a biomedical hands-on learning tool will result in motivational and conceptual gains in comparison to traditional lecture and have significant effects on underrepresented minority groups in the class. Pre- and posttests will be used to assess conceptual understanding of separations principles with respect to biomedical applications across hands-on and lecture groups. Additionally, motivational surveys will be used to gauge levels of interactivity between the two groups, relating to the ICAP hypothesis. We plan to conclude the paper submission and presentation with theoretical and practical implications of our findings from Spring 2022 implementations. 
    more » « less
  2. This evidence-based practices paper discusses the method employed in validating the use of a project modified version of the PROCESS tool (Grigg, Van Dyken, Benson, & Morkos, 2013) for measuring student problem solving skills. The PROCESS tool allows raters to score students’ ability in the domains of Problem definition, Representing the problem, Organizing information, Calculations, Evaluating the solution, Solution communication, and Self-assessment. Specifically, this research compares student performance on solving traditional textbook problems with novel, student-generated learning activities (i.e. reverse engineering videos in order to then create their own homework problem and solution). The use of student-generated learning activities to assess student problem solving skills has theoretical underpinning in Felder’s (1987) work of “creating creative engineers,” as well as the need to develop students’ abilities to transfer learning and solve problems in a variety of real world settings. In this study, four raters used the PROCESS tool to score the performance of 70 students randomly selected from two undergraduate chemical engineering cohorts at two Midwest universities. Students from both cohorts solved 12 traditional textbook style problems and students from the second cohort solved an additional nine student-generated video problems. Any large scale assessment where multiple raters use a rating tool requires the investigation of several aspects of validity. The many-facets Rasch measurement model (MFRM; Linacre, 1989) has the psychometric properties to determine if there are any characteristics other than “student problem solving skills” that influence the scores assigned, such as rater bias, problem difficulty, or student demographics. Before implementing the full rating plan, MFRM was used to examine how raters interacted with the six items on the modified PROCESS tool to score a random selection of 20 students’ performance in solving one problem. An external evaluator led “inter-rater reliability” meetings where raters deliberated rationale for their ratings and differences were resolved by recourse to Pretz, et al.’s (2003) problem-solving cycle that informed the development of the PROCESS tool. To test the new understandings of the PROCESS tool, raters were assigned to score one new problem from a different randomly selected group of six students. Those results were then analyzed in the same manner as before. This iterative process resulted in substantial increases in reliability, which can be attributed to increased confidence that raters were operating with common definitions of the items on the PROCESS tool and rating with consistent and comparable severity. This presentation will include examples of the student-generated problems and a discussion of common discrepancies and solutions to the raters’ initial use of the PROCESS tool. Findings as well as the adapted PROCESS tool used in this study can be useful to engineering educators and engineering education researchers. 
    more » « less
  3. The drive to encourage young people to pursue degrees and careers in engineering has led to an increase in student populations in engineering programs. For some institutions, such as large public research institutions, this has led to large class sizes for courses that are commonly taken across multiple programs. While this decision is reasonable from an operational and resource management perspective, research on large classes have shown that students suffer decreased engagement, motivation and achievement. Instructors, on the other hand, report having difficulty establishing rapport with their students and a growing inability to monitor students’ learning gains and provide quality individualized feedback. To address these issues, our project draws from Lattuca and Stark’s Academic Plan model, which incorporates a thorough consideration of factors influencing curricular activities that can be applied at the course, program, and institutional levels, and assumes that instructors are key actors in curriculum development and revision. We aim to revitalize feedback loops to help instructors and departments continuously improve. Recognizing that we must understand both individual and systems level perspectives, we prioritize regular engagement between faculty and institutional support structures to collaboratively identify problems and systematically establish continuous improvement. In the first phase of this NSF IUSE Institutional Transformation project, we focus on specifically prompting and studying the experiences of 8 instructors of foundational engineering courses usually taught in large class sizes across 4 different departments at a large public research institution. We collected qualitative data (semi-structured interviews, reflective journals, course-related documents) and quantitative data (student surveys and institution-provided transcript data) to answer research questions (e.g., what data do faculty teaching large foundational undergraduate engineering courses identify as being useful so that they may enhance students’ experiences and outcomes within the classes that they teach and across students’ multiple large classes?) at the intersection of learning analytics and faculty change. The data was used as a baseline to further refine data collection protocols, identify data that faculty consider meaningful and useful for managing large foundational engineering courses, and consider ways of productively leveraging institutional data to improve the learning experience in these courses. Data collection for the first phase is ongoing and will continue through the Spring 2018 semester. Findings for this paper will include high-level insights from Fall interviews with instructors as well as data visualizations created from the population-level data characterizing student performance in the foundational courses within the context of pre-college characteristics (e.g., SAT scores) and/or other academic outcomes (e.g., major switching within or out of engineer, degree attainment). 
    more » « less
  4. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  5. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less