Chemical engineers frequently contribute to the advancement of the medical field; however, such applications are often not covered in the undergraduate curriculum until third- or fourth-year electives. We propose implementing a hands-on learning tool in an elective third- and fourth-year course and core third-year separations class to help undergraduate students apply chemical engineering concepts to biomedical applications. The hands-on learning tool of interest is used to introduce students to blood separation principles through a microbead settling device. See-through columns are filled with fluid and microbeads at various ratios to model the effect of hematocrit, or red blood cell fraction, on cell settling velocities and separation efficiencies. We hypothesize that the use of a biomedical hands-on learning tool will result in motivational and conceptual gains in comparison to traditional lecture and have significant effects on underrepresented minority groups in the class. Pre- and posttests will be used to assess conceptual understanding of separations principles with respect to biomedical applications across hands-on and lecture groups. Additionally, motivational surveys will be used to gauge levels of interactivity between the two groups, relating to the ICAP hypothesis. We plan to conclude the paper submission and presentation with theoretical and practical implications of our findings from Spring 2022 implementations.
more »
« less
Work-in-Progress: Hands-On Learning Devices for Exposure to Biomedical Applications Within Chemical Engineering
Chemical engineering students learn valuable fundamentals that can be used to enhance the medical field, yet the lack of emphasis on such applications can misguide undergraduate students as they choose their major. To address this misconception, we propose the use of a hands-on, interactive learning tool to expose freshman-level chemical engineering undergraduate students to applications that go beyond the traditional oil refining and catalysis emphases typically discussed in the introductory “Applications in Chemical Engineering” course. We developed a low-cost, modified fidget spinner that introduces students to blood separation principles. On each arm of the spinner, there exists a see-through chamber filled with fluid and microbeads at various ratios, which simulates the effect of hematocrit, or red blood cell fraction, on settling velocities and terminal position—phenomena that are utilized to enhance blood separation efficiencies. Due to COVID-19, we plan to implement this device by mailing fidget spinner kits with a complementary worksheet to the students to conduct observational experiments at home in the spring 2021 semester. We hypothesize that introducing biomedical applications early in the undergraduate experience will help students understand that chemical engineering knowledge can easily be transferred to biological systems and will have a significant impact on motivation and retention of women in the cohort. Motivational surveys will be used to assess pre- and post-implementation attitudes toward chemical engineering as a major and will be compared to control data collected in fall 2020. In the paper and presentation, we will also share the mathematical modeling behind creating the microbead blood simulant. We plan to conclude the paper and presentation with theoretical and practical implications of our findings.
more »
« less
- Award ID(s):
- 1821578
- PAR ID:
- 10297447
- Date Published:
- Journal Name:
- American Society for Engineering Education
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This full research paper explores the role of faculty mentors in supporting student mentees. Faculty mentors of undergraduate students have the ability to make an academic, professional, and/or personal impact on their students. For example, mentors may provide assistance with course planning, share career goal feedback, offer life advice, etc. The benefits of these relationships may prove to be especially valuable in competitive fields such as engineering. While students stand to gain much in mentor/mentee relationships, these interactions can be mutually beneficial, producing positive effects for mentors. Despite the importance of faculty mentoring undergraduate students, there is a gap in understanding what enables faculty mentors to feel effective in their roles. The majority of studies focus on student-related outcomes and do not delve into the mentors’ side of the relationship. Addressing this gap can serve to enhance the quality of student education by providing insight into mentoring relationships. This paper will utilize Zachary’s model for effective mentoring to understand the foundation of effective mentoring. This model provides a framework for understanding mentor-mentee interactions by describing the seven elements of an effective relationship: reciprocity, learning, relationship, partnership, collaboration, mutually defined goals, and development. Mentors in academia are put in the position to orchestrate student growth through these areas by lending their guidance and expertise. In order to better understand the faculty mentor experience within one-on-one and small-group faculty-to-student mentoring relationships in the undergraduate setting, this qualitative project will study a cohort of engineering faculty mentors of undergraduate engineering students at a mid-sized research university in the Midwest. Two research questions will be examined: a. What are the factors that enable faculty mentors of undergraduate engineering students to feel effective in their role? b. How can engineering faculty be supported to enhance their mentoring interactions? The primary focus of this study will be to fill a critical gap in the understanding of faculty mentoring of undergraduate students by investigating the factors that enable faculty mentors to feel effective and proposing strategies for their support.more » « less
-
Background: Marginalization of minoritized students in undergraduate engineering education is an important equity issue created by the racism, sexism, homophobia, transphobia, and other systemic discrimination in the system. Qualitative research to understand and listen to student voices has been an important tool for documenting marginalization, but research solely to create conference and journal publications could be re-traumatizing and limited in its ability to help students or change the system. In prior work, we have argued that qualitative research should progress beyond simply documenting marginalization, to try new methods to actually change faculty perspectives. Purpose: This arts-based research paper presents an innovative audio-based project methodology to center the voices of students experiencing marginalization. Our work connects to multiple ECSJ 2023 Pillars: 1) our focus on innovation towards impact through our research is a form of methodological activism and a potentially decolonizing (broadly speaking) methodological practice; 2) the audio narratives of individual students can provide insight into the marginalizing systems through the lens of their experience (Pawley, 2013); and 3) the audio narratives are meant to provide resources towards equitable faculty practice. Format of Presentation: Our presentation will include a paper and/or web-based presentation of the audio narratives. The existing narratives are prepared on YouTube, approximately 10 minutes long for each of 10 student narratives, and include subtitles for accessibility. Our proposed presentation at ASEE will be an interactive poster presentation that incorporates the audio narratives. We will have QR codes for ASEE session participants to interact with the audio narratives and will present our analysis of how these student narratives inform faculty practice and understandings of systemic marginalization. Implications: Our primary implications will be for engineering education researchers of marginalization, to potentially incorporate our methodology to help create a more impactful and engaged research agenda.more » « less
-
null (Ed.)This paper focuses on discussing the efforts made to engage students in multi-disciplinary research and integrate teaching and research in the areas of FTIR Spectro- microscopy and image processing and analysis. The author (PI) and co-PIs acquired a Fourier Transform Infrared (FTIR) Spectroscopic Imaging equipment through the National Science Foundation- Major Research Instrumentation (NSF- MRI) grant (#1827134). This project aims to use the equipment to conduct undergraduate and graduate research projects and teach undergraduate and graduate classes. The NSF awarded the California State University Chico (CSU Chico) $175,305 to acquire an FTIR spectrometer and microscope, which are important tools for chemical characterization of samples with infrared active molecules. FTIR Spectroscopic Imaging System especially provides accurate chemical images that reveal the variations in images’ pixels which are mappings of constituent materials of samples rather than a single visible image with slight variations. By employing this equipment in research and the Image Processing course, students can learn how to collect, process and analyze the imaging data of samples and the corresponding spectral data. The students not only will learn how to process a single chemical image, but also will work with the data cubes to consider the pixel intensities along the IR spectrum, experience working with big data, hone the skills to design experiments, analyze larger data sets, develop pre- and post-image processing techniques, and apply and refine math and programming skills. Image processing course conventionally is based on math, digital signal and systems, and requires programming skills such as Matlab, C++, and Python. along with the mentioned knowledge. Additionally, the research conducted by this equipment promotes collaboration between engineering major students and science major students. In this paper, the author will explain how collecting data through running experiments with the FTIR Spectroscopic Imaging equipment helps students visualize theory and relate it to real world problems. This paper also discusses the results of engaging undergraduate students from various majors in research. Moreover, it will discuss some of the projects that were conducted by undergraduate students and their learning outcomes. The objective of the research projects was material characterization towards contribution to health by employing FTIR Spectroscopic Imaging System.more » « less
-
This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing.more » « less
An official website of the United States government

