skip to main content

Search for: All records

Award ID contains: 1821578

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our project involves the national dissemination of highly visual hands-on learning tools focused on fluid mechanics and heat transfer principles to 44 institutions and branch campuses within the United States. Like many other educators, our team had to adapt the implementation protocols to accommodate remote learning during the COVID-19 pandemic. Rather than students working in groups with our hands-on learning tools, we created follow-along video implementations and supplementary tutorial videos. The videos allow students to complete the complementary worksheets associated with each hands-on learning tool while watching a graduate student explain basic concepts and collect real-time data with the hands-onmore »learning tools. The supplementary tutorial videos are focused on an in-depth discussion of a single conceptual aspect of the learning tool. Across three remote-learning semesters, a total of 36 virtual implementations at 12 institutions were completed with approximately 630 chemical and mechanical engineering students. An asynchronous implementation method was used for 70% of the virtual implementations, while other instructors presented virtual material in a synchronous virtual setting with several allowing live, small-group discussion. At the conference, we will present conceptual and motivational assessment results to compare the effectiveness of virtual implementations versus traditional interactive hands-on implementations.« less
    Free, publicly-accessible full text available November 7, 2022
  2. Chemical engineering students learn valuable fundamentals that can be used to enhance the medical field, yet the lack of emphasis on such applications can misguide undergraduate students as they choose their major. To address this misconception, we propose the use of a hands-on, interactive learning tool to expose freshman-level chemical engineering undergraduate students to applications that go beyond the traditional oil refining and catalysis emphases typically discussed in the introductory “Applications in Chemical Engineering” course. We developed a low-cost, modified fidget spinner that introduces students to blood separation principles. On each arm of the spinner, there exists a see-through chambermore »filled with fluid and microbeads at various ratios, which simulates the effect of hematocrit, or red blood cell fraction, on settling velocities and terminal position—phenomena that are utilized to enhance blood separation efficiencies. Due to COVID-19, we plan to implement this device by mailing fidget spinner kits with a complementary worksheet to the students to conduct observational experiments at home in the spring 2021 semester. We hypothesize that introducing biomedical applications early in the undergraduate experience will help students understand that chemical engineering knowledge can easily be transferred to biological systems and will have a significant impact on motivation and retention of women in the cohort. Motivational surveys will be used to assess pre- and post-implementation attitudes toward chemical engineering as a major and will be compared to control data collected in fall 2020. In the paper and presentation, we will also share the mathematical modeling behind creating the microbead blood simulant. We plan to conclude the paper and presentation with theoretical and practical implications of our findings.« less
    Free, publicly-accessible full text available July 1, 2022
  3. The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements inmore »student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3D-printed miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2-day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the American Society for Engineering Education (ASEE) Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning.« less
    Free, publicly-accessible full text available July 1, 2022
  4. The 2020 coronavirus pandemic necessitated the transition of courses across the United States from in-person to a virtual format. Effective delivery of traditional, lecture-based courses in an online setting can be difficult and determining how to best implement hands-on pedagogies in a virtual format is even more challenging. Interactive pedagogies such as hands-on learning tools, however, have proven to significantly enhance student conceptual understanding and motivation; therefore, it is worthwhile to adapt these activities for virtual instruction. Our team previously developed a number of hands-on learning tools called Low-Cost Desktop Learning Modules (LCDLMs) that demonstrate fluid mechanics and heat transfermore »concepts—traditionally utilized by student groups in a classroom setting, where they perform qualitative experiments and interactively discuss conceptual items. In this paper we explore our efforts to transition the LCDLM hands-on pedagogy to an entirely virtual format and focus on a subset effort with greater detail to be show at the ASEE conference as we analyze additional data. To aid the virtual implementations, we created a number of engaging videos under two major categories: (1) demonstrations of each LCDLM showing live data collection activities and (2) short, animated, narrated videos focused on specific concepts related to learning objectives. In this paper we present preliminary results from pre- and post- implementation conceptual assessments and motivational surveys completed for virtual implementations of LCDLMs, and compare them with a subset of results collected during hands-on implementations in previous years. Significant differences in conceptual understanding or motivation between hands-on and virtual implementations will be discussed. This paper will provide useful, data-driven guidance for those seeking to switch hands-on pedagogies to a virtual format.« less
    Free, publicly-accessible full text available July 1, 2022
  5. A novel miniaturized, transparent reactor system for use as either a research or educational tool was developed for investigating biomass char gasification with oxygen to determine the kinetic parameters. Parametric temperature and pressure data taken can be used to distinguish the validity of assumptions inherent in the Avrami, the random pore (RPM), the unreacted core shrinking (UCSM), and a UCSM hybrid models (HM). The results demonstrate the UCSM for spherical and cylindrical geometries, and an HM variation with a best-fit exponent, that yields residual sums of squares 2 to 4 orders of magnitude lower than other models. An Arrhenius evaluationmore »yielded an activation energy of 84.8 kJ/mol and pre-exponential factor of 1.34  103 s-1. An O2 reaction order of 0.85 indicates O2 adsorption on the char surface is the primary rate-controlling step. Data are consistent with a rapidly decreasing surface area as the reaction nears completion, suggesting available corresponding active sites for rapid chemisorption decrease as the reaction progresses. More importantly, the design of the system is safe to take into the classroom while simultaneously allowing students to view real-time reactions and produce repeatable data; this pushes the bounds on classroom interventions and learning.« less