Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our project involves the national dissemination of highly visual hands-on learning tools focused on fluid mechanics and heat transfer principles to 44 institutions and branch campuses within the United States. Like many other educators, our team had to adapt the implementation protocols to accommodate remote learning during the COVID-19 pandemic. Rather than students working in groups with our hands-on learning tools, we created follow-along video implementations and supplementary tutorial videos. The videos allow students to complete the complementary worksheets associated with each hands-on learning tool while watching a graduate student explain basic concepts and collect real-time data with the hands-onmore »Free, publicly-accessible full text available November 7, 2022
-
Chemical engineering students learn valuable fundamentals that can be used to enhance the medical field, yet the lack of emphasis on such applications can misguide undergraduate students as they choose their major. To address this misconception, we propose the use of a hands-on, interactive learning tool to expose freshman-level chemical engineering undergraduate students to applications that go beyond the traditional oil refining and catalysis emphases typically discussed in the introductory “Applications in Chemical Engineering” course. We developed a low-cost, modified fidget spinner that introduces students to blood separation principles. On each arm of the spinner, there exists a see-through chambermore »Free, publicly-accessible full text available July 1, 2022
-
The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements inmore »Free, publicly-accessible full text available July 1, 2022
-
The 2020 coronavirus pandemic necessitated the transition of courses across the United States from in-person to a virtual format. Effective delivery of traditional, lecture-based courses in an online setting can be difficult and determining how to best implement hands-on pedagogies in a virtual format is even more challenging. Interactive pedagogies such as hands-on learning tools, however, have proven to significantly enhance student conceptual understanding and motivation; therefore, it is worthwhile to adapt these activities for virtual instruction. Our team previously developed a number of hands-on learning tools called Low-Cost Desktop Learning Modules (LCDLMs) that demonstrate fluid mechanics and heat transfermore »Free, publicly-accessible full text available July 1, 2022
-
A novel miniaturized, transparent reactor system for use as either a research or educational tool was developed for investigating biomass char gasification with oxygen to determine the kinetic parameters. Parametric temperature and pressure data taken can be used to distinguish the validity of assumptions inherent in the Avrami, the random pore (RPM), the unreacted core shrinking (UCSM), and a UCSM hybrid models (HM). The results demonstrate the UCSM for spherical and cylindrical geometries, and an HM variation with a best-fit exponent, that yields residual sums of squares 2 to 4 orders of magnitude lower than other models. An Arrhenius evaluationmore »