skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A review on machine learning for neutrino experiments
Neutrino experiments study the least understood of the Standard Model particles by observing their direct interactions with matter or searching for ultra-rare signals. The study of neutrinos typically requires overcoming large backgrounds, elusive signals, and small statistics. The introduction of state-of-the-art machine learning tools to solve analysis tasks has made major impacts to these challenges in neutrino experiments across the board. Machine learning algorithms have become an integral tool of neutrino physics, and their development is of great importance to the capabilities of next generation experiments. An understanding of the roadblocks, both human and computational, and the challenges that still exist in the application of these techniques is critical to their proper and beneficial utilization for physics applications. This review presents the current status of machine learning applications for neutrino physics in terms of the challenges and opportunities that are at the intersection between these two fields.  more » « less
Award ID(s):
1940209
PAR ID:
10297448
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Journal of Modern Physics A
Volume:
35
Issue:
33
ISSN:
0217-751X
Page Range / eLocation ID:
2043005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of machine learning techniques has significantly increased the physics discovery potential of neutrino telescopes. In the upcoming years, we are expecting upgrades of currently existing detectors and new telescopes with novel experimental hardware, yielding more statistics as well as more complicated data signals. This calls for an upgrade on the software side needed to handle this more complex data in a more efficient way. Specifically, we seek low power and fast software methods to achieve real-time signal processing, where current machine learning methods are too expensive to be deployed in the resource-constrained regions where these experiments are located. We present the first attempt at and a proof-of-concept for enabling machine learning methods to be deployed in-detector for water/ice neutrino telescopes via quantization and deployment on Google Edge Tensor Processing Units (TPUs). We design a recursive neural network with a residual convolutional embedding and adapt a quantization process to deploy the algorithm on a Google Edge TPU. This algorithm can achieve similar reconstruction accuracy compared with traditional GPU-based machine learning solutions while requiring the same amount of power compared with CPU-based regression solutions, combining the high accuracy and low power advantages and enabling real-time in-detector machine learning in even the most power-restricted environments. 
    more » « less
  2. Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges. 
    more » « less
  3. Abstract Neutrinos are one of the most promising messengers for signals of new physics Beyond the Standard Model (BSM). On the theoretical side, their elusive nature, combined with their unknown mass mechanism, seems to indicate that the neutrino sector is indeed opening a window to new physics. On the experimental side, several long-standing anomalies have been reported in the past decades, providing a strong motivation to thoroughly test the standard three-neutrino oscillation paradigm. In this Snowmass21 white paper, we explore the potential of current and future neutrino experiments to explore BSM effects on neutrino flavor during the next decade. 
    more » « less
  4. Abstract Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. Refined nuclear interaction models in these energy regimes will also be valuable for other applications, such as measurements of reactor, solar, and atmospheric neutrinos. This manuscript discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators. 
    more » « less
  5. Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours. 
    more » « less