skip to main content


Title: Responses of concrete-filled FRP tubular and concrete-filled FRP-steel double skin tubular columns under horizontal impact
Award ID(s):
1230351
NSF-PAR ID:
10297507
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Thin-Walled Structures
Volume:
155
Issue:
C
ISSN:
0263-8231
Page Range / eLocation ID:
106941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. The rapid increase in the wind energy sector has brought forward a challenging problem of disposing off a huge quantity of non-biodegradable, thermosetting fibre reinforced polymer (FRP) composite materials used in wind turbine blades. Most of the existing solutions are either not sustainable or not economical. This study focuses on re-use options. In this paper a design option for re-using decommissioned wind turbine blades in pedestrian bridges is presented. To demonstrate the concept, an 8.5 m long pedestrian bridge is designed using parts taken from two A29 (modified version of Vestas V27) windblades. A preliminary code-based structural analysis is carried out to assess practicality of the proposed design and to check strength and serviceability requirements given in the prescribed codes. The results show that proposed design full-fills the strength criteria and serviceability requirements recommended in the Eurocodes. The maximum strength utilisation of the blade components is found about 61% and deflection is limited to span/303. 
    more » « less
  3. Ilki, Alper ; Ispir, Medine ; Inci, Pinar (Ed.)
    Externally bonded fiber-reinforced polymer (EBFRP) composites are a cost-effective material used for repair and seismic retrofit of existing concrete structures. Even though EBFRP composites have been extensively utilized over the past 20 years as seismic retrofits, there are few data documenting their performance in a real shaking event or after long-term use on concrete structures. In this study, semi-destructive and non-destructive techniques were employed to evaluate the performance and durability of EBFRP-retrofitted buildings that had experienced the 2018 Cook Inlet Earthquake in Anchorage, AK. The performance of EBFRP was evaluated and documented through photographic evidence. Acoustic sounding, infrared thermography, and bond pull-off tests were utilized to evaluate the quality of bonding between the EBFRP and concrete. EBFRP samples were also collected from building interiors and exteriors for chemical and thermal analysis to evaluate the long-term effects of environmental exposure. Although environmental conditions were found to influence the bond quality between the EBFRP composite and concrete substrate, no major signs of earthquake damage to the building components retrofitted with EBFRP were noted. Materials characterization results demonstrated no evidence of polymer matrix degradation in exterior EBFRP samples. 
    more » « less